Дипломная работа: Вплив легування цинком на властивості МОН структур
В тонких оксидних плівках значно впливає на властивості окислу межа розділу фаз.
Здатність шару SiO2 служити локальним маскуючим покриттям при дифузії атомів легуючої домішки при підвищених температурах – дуже корисна властивість для технології формування ІС. В процесі маскування поверхні кремнію від дифузії домішки, оксид перетворюється в склоподібну фазу – так зване домішковосилікатне скло.
Значення дифузійних констант для різних легуючих домішок в SiO2 від концентрації домішок, властивостей та структури SiO2 .
Найчастіше для створення в кремнію областей з провідністю n-типу застосовують Р, Sb та As, а для формування області з провідністю р-типу – В. ці домішки мають малі коефіцієнти дифузії в оксиді, тому оксид може застосовуватись для маскуванні при дифузії домішки в кремнію. Що стосується галію та алюмінію, то при їх використанні застосовувати окисел кремнію для маскування не можна. Найчастіше плівки оксиду, що використовують для маскування традиційних домішок в стандартних технологічних процесах формування напівпровідникових приладів, мають товщину 0.5-0.7 мкм.
1.2.1. Заряд в окислі.
Межа розділу Si-SiO2 є перехідною областю між кристалічним кремнієм і аморфним кварцевим склом, як щодо положення атомів, так і щодо стехіометрії. Різні за природою заряди та пастки носіїв супроводжують термічно окислений кремній, частина з них зв’язана з перехідною областю. Заряд на межі розділу може індукувати заряд протилежної полярності в розташованій під нею області кремнію, впливаючи на і деальність характеристик МОН-приладу та цим самим на вихід якісних виробів і їх надійність.
На рис. 1.4. показані основні види зарядів, зв’язаних з оксидом. Вони записуються:
N=Q/q,
де Q(Кл/см2 ) – результуючий ефективний заряд на одиницю площі на межі розділу – Si-SiO2 ; N (см-2 ) – результуюче число зарядів на одиницю площі на межі розділу Si-SiO2 ; q – заряд електрона.
Заряд поверхневих станів - це заряд електронних станів, що локалізовані на границі розділу SI-SiO2 і енергія яких лежить в глибині забороненої зони напівпровідника. Ці поверхневі стани (їх називають також швидкими) можуть досить швидко перезаряджатися, обмінюючись електронами (дірками) з кремнієм. Поверхневі стани зумовлені надлишковими атомами кремнію, надлишковим киснем або домішковими атомами. Основною причиною виникнення цих станів є те, що сама межа розділу є порушенням просторової періодичності кристалічної решітки. В сучасних МОН-структурах, які отримують шляхом термічного окислення кремнію, більша частина поверхневого заряду нейтралізується в процесі низькотемпературного відпалу (450 °С) в атмосфері водню. В кращих зразках величина Nit не перевищує 1010 см-2 , що відповідає одному захопленому заряду на кожні 105 атомів межі розділу.
Поверхневі стани вважаються донорними, якщо, віддаючи електрон, вони стають нейтральними або позитивно зарядженими. Акцепторними називають поверхневі стани, які стають нейтральними або негативно зарядженими, захоплюючи електрон.
Еквівалентна електрична схема МОН-структури, що враховує вплив поверхнева станів, показана на рис.2.2.
На цьому малюнку Сi і Сd ємності ізолятора та збідненого шару напівпровідника. Еквівалентна ємність Сs , і еквівалентний опір Rs , залежать від поверхневого потенціалу і описують перезарядку поверхневих станів. Добуток Сs Rs , визначає час релаксації заповнення поверхневих пасток та залежність процесу перезарядки поверхневих станів. Паралельні гілки електричної схеми на рис. 2.2 можна показати в вигляді залежної від частоти еквівалентної ємності:
Cp =Cd +Cs /(1+wt2 ),t
включеної паралельно з провідністю:
Cp /w= Cs wt/(1+w2 t2 ),
де t=Сs Rs .
Активна та реактивна складові повної комплексної провідності еквівалентах схем, показаних на рис. 2.2 :
Yig =Gin +jw×Cin ,
визначаються виразами:
Gin =w2 Cs t Ci 2 /[Ci +Cd +Cs )2 +w2 t2 (Ci +w2 t2 (Ci +Cd )2 ],
Cin =Ci {Cd +Cs [(Ci +Cd +Cs )2 +w2 t2 Cd (Ci+Cd )]/[( Ci +Cd +Cs )2 + w2 t2 Cd (Ci+Cd )]}/
[(Ci +Cd +Cs )…
Для визначення величини заряду, захопленого на поверхневі пастки, можна використовувати вимірювання вхідної ємності МДН-структури та вимірювання ЇЇ вхідної провідності. Метод провідності дозволяє точніше визначати густину поверхневих станів. Це особливо важливо при дослідженні МОН-структур з відносно малою (~1010 см-2 еВ-1 ) густиною поверхневих станів. Перевага ємнісних методів полягає в тому, що з їх допо-
могою можна порівняно легко визначити зсув напруги плоских зон та величину повного захопленого заряду Оit .
На рис. 2.2 проілюстроване витягування С-V-характеристики МОН-структури за рахунок поверхневого захопленого заряду. При високих частотах (wt>>1) заряд на поверхневих станах не встигає за змінами тестуючої напруги. В цьому випадку вираз для значення С набуде вигляду:
С=Сi ×Cd /( Сi +Cd ) (Ф/см2 ).
Високочастотна вольт-фарадна залежність МОН-структури, в яку не входить
ємність поверхневих станів Сs зображена на рис.2.2 штриховою лінією. Але і в цьому випадку поверхневі стани впливають на форму вольт-фарадної характеристики, зсовуючи ї вздовж осі напруг. При наявності зв'язаного поверхневого заряду вимагається відповідне збільшення заряду на металі.