Доклад: Функция и ее свойства
Функция- зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у .
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у , соответствующее заданному значению х .
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для любых х1 и х2 , таких, что х1 < х2 , выполняется неравенство f( х1 )<f( х2 )
Убывающая функция- если для любых х1 и х2 , таких, что х1 < х2 , выполняется неравенство f( х1 )>f( х2 )
Способы задания функции
¨ Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у =f(x) , где f(x)- íåêîòîðîå âыðàæåíèå с переменной х . В таком случае говорят, что функция задана формулой или что функция задана аналитически.
¨ На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
Виды функций и их свойства
1) Постоянная функция- функция, заданная формулой у= b , где b- некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат
2) Прямая пропорциональность- функция, заданная формулой у= kx , где к¹0. Число k называется коэффициентом пропорциональности .
Cвойства функции y=kx :
1. Область определения функции- множество всех действительных чисел
2. y=kx - нечетная функция
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
3)Линейная функция- функция, которая задана формулой y=kx+b , где k иb - действительные числа. Если в частности, k=0 , то получаем постоянную функцию y=b ; если b=0 , то получаем прямую пропорциональность y=kx .
Свойства функции y=kx+b :
1. Область определения- множество всех действительных чисел
2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.
3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой
Графиком функции является прямая .
4)Обратная пропорциональность- функция, заданная формулой y=k /х, где k¹0 Число k называют коэффициентом обратной пропорциональности.
Свойства функции y=k / x:
1. Область определения- множество всех действительных чисел кроме нуля
--> ЧИТАТЬ ПОЛНОСТЬЮ <--