Доклад: Идеальное - реально
Матрица в идеальных числах – это уже не просто «таблица чисел» из «всякого многого» реальной математики. Это обязательно система взаимосвязанных и взаимно определяющих меньших идеальных чисел, каждый на своём определённом месте. Поэтому в идеальных числах не могут возникнуть парадоксы, гипотезы, противоречия…
Математически строго доказать, что предложенные идеальные числа – идеальны, по-видимому, невозможно. Их надо принять как аксиомы, без доказательств. Как приняли в своё время мифологический идеализм Платона, интуитивную теорию множеств Кантора, примите сейчас их дальнейшее развитие – Идеальную математику.
В пользу идеальности идеальных чисел свидетельствует простота их стандартного образования (начиная с единицы 1) только одной операцией сложения идеальных же чисел предшествующей ступени – многоступенным сложением единиц.
На самых первых ступенях вариантов образования математических чисел по образцам идеальных было сравнительно мало (хоть на каждой ступени число их постоянно уходило во всё большую бесконечность), поэтому человечество правдами и неправдами, но сложило единые для всех натуральные, целые, рациональные и действительные математические числа. Но с 5й ступени множества вариантов предоставили столь огромные и также постоянно растущие до следующей бесконечности возможности, что позволили создавать уже не столь чёткие и единые повсеместно комбинации новых математических чисел. Так, кроме положенных для 5й ступени – функций, для 6й – состояний, для 7й – континуумов и т.д. математическими числами создавались нечёткие комбинации функций с элементами состояния или даже континуума.… Либо континуумы с ярко выраженной особой функциональной зависимостью…. И другие возможные сочетания свойств в одном сложном, громоздком, непрозрачном математическом объекте. Такими объектами переполнены современная математика и программирование.
Долгое время математики не делали различий между математическими числами 5й, 6й, 7й и т.д. ступеней и называли всё – функциями. Но со временем стали замечать, что последние «функции» отличаются от первых. Поэтому стали называть их «расширенными», «обобщёнными», «специальными», «преобразованными» и пр. Но – всё-таки функциями!
С развитием и распространением системного анализа всё, созданное математикой после 6й ступени (сегодня – вплоть до 10й ступени) стали причислять к лику «систем» - эквиваленту идеального состояния: «Системный подход там, где объект целесообразно рассматривать самостоятельной системой, функционирующей в среде (Это, действительно, объект 6й ступени. Клюйковы) и взаимодействующей с другими системами (Это уже объект 7й ступени! Клюйковы), в том числе – из других сред (Это - объекты 8й и более ступеней! Клюйковы)» [9].
Аналогично, в функциональном анализе всё (вплоть до последних исследований искусственного интеллекта) причисляют к лику «пространств» - эквиваленту идеального континуума!
Откуда такая инертность?
Дело в том, что все последующие идеальные числа строятся сложением предыдущих и, естественно, обладают всеми их свойствами плюс какое-то новое-своё. Поэтому числа 6й, 7й и т.д. ступеней можно продолжать называть «функциями». И это будет справедливо! Но в упор не замечать в этих «функциях» новых-своих свойств – несправедливо!
Аналогично, можно числа выше 6й ступени продолжать называть «системами», так как они действительно обладают свойствами систем. Но это уже не просто «системы», а объекты более сложной абстракции.
Также и числа после 7й ступени – это не только «пространства», не только континуумы, обслуживаемые функциональным анализом. Они - более «умные» объекты, моделируют не только отдельные континуумы, а и их растущий уровень, дальнейшее развитие, предоставляемую возможность вывода оптимальных решений… Это отдельному континууму, отдельному «пространству» - не свойственно, не «по зубам». Поэтому обзывать новые, высокоэффективные числа просто «пространствами» - негоже!
То есть, можно построить (и строят!) языки программирования, результаты которых одновременно будут обладать свойствами, например, 7й и 9й ступеней. И такое построение будет работать, и приносить пользу. Но в таком кентавре связи между числами 7й и 9й ступеней не будут прозрачным простым сложением! Для организации чисел 7й ступени в число со свойствами 9й ступени необходимо немалое творчество, интуиция и талант создателя!
Если же идти последовательно реальными ступенями Идеальной математики, то надо строить язык программирования вначале сложением идеальных чисел 7й ступени её аксиомой: «всё большими интегралами моделей состояния по другим состояниям (влияниями)». Затем усложнить этот язык программирования сложением полученных результатов аксиомой 8й ступени: «списками по единому протоколу» в идеальные модели уровня 8й ступени. И, наконец, ещё более усложнить язык программирования сложением чисел 8й ступени «межуровневыми связями единым направлением по возрастающим критериям» в идеальные числа 9й ступени. В таком случае новый язык программирования будет абсолютно прост, прозрачен, технологичен до машинного его сотворения. И не потребует от создателя особого творчества, интуиции и таланта!
Пора прекратить обманывать себя и окружающих сложностями, трудностями и таинственностью зарождения нового в математике и программировании. В основе всего – простое сложение идеальных чисел Платона. И они давно уже среди нас, реальны. До сегодня мы пользовались ими на уровне бессознательного, там, где и предвидел их Платон. И называли результаты «озарением», «интуицией». Переведём же идеальные числа в сознание, вровень с привычными математическими числами! И тогда на жизненный вопрос из «Формулы любви» Марка Захарова «Хочешь большой, но чистой любви?» вместо туманного ответа «Любовь, по-ихнему, амор, и глазами так… ууу» будем отвечать просто: «Приходи, как стемнеет, на сеновал».
При строгом пользовании реальными ступенями Идеальной математики углубится Познание, упростится изучение, применение и развитие математики, программирование станет машинным, его качество – лучшим. А в перспективе - позволит нам в кратчайшее время ускоренными темпами преодолеть необходимое усложнение сознания оставшимися ступенями Идеальной математики, дойти до Искусственного Разума и, наконец-то, исполнить мечту Платона - навечно слиться, раствориться в Мировом Разуме!
Список литературы
1. Асадуллаев И. Абсурдность основного вопроса философии. www.sorokinfond.ru/index.php?id=879
2. Ширяев В.И., Клюйков С.Ф. Исследование деформации калиброванных валков прокатных станов. // Изв. вузов. Чёрн. Металлургия.- 1976.- №6.- С.72-74.
3. Начала Евклида.- М.-Л: Гостехиздат. 1949 (Книги VII-X).
4. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров.- М.: Наука. 1974.- 832 с.
5. Клюйков С.Ф. Числа и познание мира.- Мариуполь: Полиграфический центр газеты «ИнформМеню». 1997.- 112с.
6. Клюйков С.Ф. Основи математики системою аксіом, що розширюється // Матеріали IV Міжнародної науково-практичної конференції «Динаміка наукових досліджень '2005». 20-30 червня 2005. Том 26 Математика. – Дніпропетровськ: Наука і освіта. 2005.- С.25-36.
7. Клюйков Р.С., Клюйков С.Ф. Языки программирования и Идеальная математика // Materialy V Miedzynarodowej naukowi-praktycznej konferencji “Naukowa przestzen Europy - 2009”. Volume 17 Matemamyka. Nowoczesne informacyjne technologie.- Przemysl: Nauka i studia. 2009. – 96 str, С 3-16.
8. Клюйков С.Ф. Хребет математики.- Мариуполь: Типография металлургического комбината имени Ильича. 2000.- С. 83.
9. Старіш О.Г. Системологія.- Київ: Центр навчальної літератури. 2005.- 232 с.
10. Клюйков С.Ф. Идеальная форма методов строительной механики // Защита металлургических машин от поломок.- Мариуполь, 2002.- Вып.6.- С.49-55.