Доклад: Идеальный газ
Двух- и трёхатомный газ. Вращение молекул.
Двухатомные молекулы из одинаковых атомов обладают специфическими особенностями, которые мы рассмотрим на примере пара- и ортоводорода.
Параводород
Как уже было рассмотрено, общая статсумма выражается как
“Вращательная” и “колебательная” суммы здесь определяются как
Множитель (2К+1) во вращательной сумме учитывает вырождение вращательных уровней по направлениям момента К. Свободная энергия, в конечном итоге выражается из трёх частей:
Первый член связан со степенями свободы поступательного движения молекул, назовём его поступательной частью .
Вращательная и колебательные части:
Поступательная часть всегда выражается формулой типа
, с постоянной теплоёмкостью и химической постоянной .
Полная теплоёмкость будет выражаться в виде суммы , .
Займёмся вращательной свободной энергией. Если температура настолько велика, что , то вращательная статсумма может быть заменена интегралом
Здесь e(M) – выражение кинетической энергии вращения как функции момента вращения М.
Отсюда свободная энергия
Таким образом, при рассматриваемых не слишком низких температурах вращательная часть теплоёмкости оказывается постоянной и равной в соответствии с общими результатами классического рассмотрения. Вращательная часть химической постоянной равна . Существует значительная область температур, в которой выполняется и в то же время колебательная часть свободной энергии, а вместе с нею и колебательная часть теплоёмкости отсутствуют. В этой области теплоёмкость двухатомного газа равна , т.е. , , а химическая постоянная .
В предельном случае низких температур достаточно сохранить два
первых члена суммы:
В том же приближении для свободной энергии:
Энтропия:
И, наконец, теплоёмкость:
Двухатомный газ с молекулами из
одинаковых атомов. Вращение молекул.
Двухатомные молекулы, состоящие из одинаковых атомов, обладают специфическими особенностями, что приводит к необходимости изменить полученные выше формулы.