Доклад: Радиоэлектронные каналы утечки информации
В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах.
Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют 65% телефонных линий России. Кабели бывают симметричными и коаксиальными.
Если обе жилы цепи, образованного кабелем, выполнены из проволоки одинакового диаметра, имеют изоляцию одинаковой конструкции и расположены так, что между ними можно провести плоскость симметрии, то кабель называется симметричным. Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то такой кабель - коаксиальный.
Симметричные кабели представляют собой проводники (жилы) с нанесенными на них одним или несколькими слоями изолятора из диэлектрических материалов. Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии. Известные конструкции симметричных кабелей содержат от 1х2 до 2400х2 жил под общей защитной оболочкой.
В коаксиальном кабеле один проводник концентрически расположен внутри другого проводника, имеющего форму полого цилиндра. Внутренний проводник изолируется от внешнего с помощью различных изоляционных материалов и конструкций. Для изоляции коаксиальных пар кабеля применяется сплошной и пористый полиэтилен, изоляция в виде шайб, в последовательно соединенных баллончиков, напоминающий разрез бамбука и др. Для обеспечения гибкости кабеля внешний проводник выполняется из медной или железной сетки, а для защиты от внешних воздействий он покрывается слоем изолятора (полихлорвинила).
Основными параметрами проводных линий связи являются ширина пропускаемого ими спектра частот и собственное затухания Zc = 10 lgPвх / Pвых , где Pвх и Pвых - мощность сигнала на входе и выходе цепи соответственно.
Если сопротивление проводников на низких частотах (в диапазоне 0-100 кГц) определяется удельным сопротивлением материала и площадью поперечного сечения проводника, то на более высоких частотах начинается сказываться влияние поверхностного эффекта. Сущность его заключается в том, что переменное магнитное поле, возникающее при протекании по проводнику тока, создает внутри проводника вихревые токи, В результате этого плотность основного тока перераспределяется по сечению проводника (жилы): уменьшается в центре и возрастает на периферии. Глубина проникновения (в мм) тока в медную жилу q=67/, где f-частота колебаний в Гц. На частоте f=60 кГц глубина проникновения составляет приблизительно 0.3 мм, а на частоте 250 кГц - на порядок ниже, всего около 0.03 мм. Следовательно, ток с этой частотой распространяется по гипотетической тонкой медной трубке с существенно меньшей площадью сечения и, соответственно, большим сопротивлением.
На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические провода. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с медными проводами - до 150 кГц, по симметричным кабелям - до 600 кГц, Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухание порядка 60-70 дБ.
В коаксиальном кабеле электрическое поле замыкается между внутренним и внешним проводниками, поэтому внешнее электрическое поле отсутствует. Кабель не имеет также внешнего магнитного и электромагнитного полей, что и обусловливает его основные преимущества перед симметричными. Вследствие поверхностного эффекта ток при повышении частоты оттесняется во внутреннем проводнике к его наружной поверхности, а во внешнем, наоборот, к внутренней. Стандартная коаксиальная пара 1.2/4.4 (с диаметрами внутреннего и внешнего проводников - 1.2 и 4.4. мм соответственно) обеспечивают передачу 900-960 телефонных каналов на расстояние до 9 км или 3600 каналов на расстояние 1.5км. При увеличении диаметров проводников до 2.6/9/5 число телефонных каналов для длины участка 1.5 км возрастает до 10800.Ширина частотного диапазона такого кабеля достигает 60 МГц. Повышение частотного диапазона потребует дальнейшего увеличения диаметров проводников коаксиального кабеля.
Электромагнитная волна представляет форму существования электромагнитного поля в виде изменяющихся во времени по синусоидальному закону значений напряженности электрического и магнитного полей.
Электромагнитная волна как носитель информации в радиоэлектронном канале утечки возникает при протекании по проводам электрического тока переменной частоты и распространяются от источника ненаправленного излучения радиально во все стороны с конечной скоростью, в атмосфере несколько меньшей скорости света. Векторы напряженности электрического и магнитного полей взаимноперпендикулярны и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 1).
Диапазон длин волн |
Наименование волн |
Обозначение и наименование частот |
Диапазон частот |
> 100 км | - | ELF-чрезвычайно низкие | Доли Гц-3 кГц |
10-100 км | Мириаметровые | VLF(ОНЧ)-очень низкие | 3-30 кГц |
1-10 км |
Километровые (длинные) | LF(НЧ)-низкие | 30-300 кГц |
100-1000 м |
Гектаметровые (средние) | MF(СЧ)-средние | 300-3000 кГц |
10-100 м |
Декаметровые (короткие) | HF(ВЧ)-высокие | 3-30 МГц |
1-10 м | Метровые | (ОВЧ)-очень высокие | 30-300 МГц |
10-100 см | Дециметровые | UHF(УВЧ)-ультравысокие | 300-3000 МГц |
1-10 см | Сантиметровые | SHF(СВЧ)-сверхвысокие | 3-30 ГГц |
1-10 мм | Миллиметровые | EHF(КВЧ)-крайне высокие | 30-300 ГГц |
0.1-1 мм | Децимиллиметровые | ГВЧ-гипервысокие | 300-3000 ГГц |
Поляризация определяет направление вектора напряженности электрического поля. Если вектор электрического поля лежит в вертикальной плоскости, то поляризация вертикальная, когда он находится в горизонтальной плоскости, то - горизонтальная. Промежуточное положение характеризуется углом поляризации между плоскостями поляризации и распространения. Плоскостью поляризации называется плоскость, в которой находятся вектора электрического поля и вектор распространения электромагнитной волны. Плоскость распространения имеет вертикальное расположение и проходит через вектор распространения электромагнитной волны.
Мощность излучения электромагнитного поля тем выше, чем ближе частота колебаний в распределенном контуре, образованного индуктивностью проводников и распределенной емкостью между ними и землей, к частоте сигнала. Устройства, в которых обеспечивается эффективное преобразование энергии электрических сигналов в электромагнитную волну, называются антеннами.
4. Антенные устройства являются неотъемлемой частью передающих и приемных радиоэлектронных средств. Причем их конструкция остается неизменными в режимах передачи и приема, за исключением тех случаях, когда излучается большая мощность. В этом случае приходится принимать дополнительные меры по предотвращению электрического пробоя в высоковольтных цепях передающей антенны, необходимость в которых отсутствует для приемной. В общем случае принцип обратимости позволяет передающую антенну использовать в качестве приемной и наоборот.
Характер поляризации электромагнитной волны зависит от конструкции и расположения излучающих элементов антенны. Несоответствие поляризации электромагнитной волны пространственной ориентации элементов приемной антенны, в которых наводятся электрические заряды, приводит к уменьшению величины этих эарядов. Радиоволны в зависимости от условий распространения делятся на земные (поверхностные), прямые, тропосферные и ионосферные (пространственные).