Доклад: Радиоэлектронные каналы утечки информации
Радиоволны, которые распространяются в тропосфере - приземной неоднородной области атмосферы не выше 10-12 км от поверхности Земли, называются тропосферными. В тропосфере происходит рассеивание, а также частичное искривление траектории и отражение радиоволн от неоднородностей тропосферы. Ионосферными называют радиоволны, распространяющиеся в результате последовательного отражения от ионосферы и земной поверхности. Ионосферу образуют ионизированные под действием ультрафиолетового излучения Солнца верхние слои атмосферы. Концентрация свободных электронов в ионосфере меняется по высоте. В зависимости от концентрации свободных электронов и соответственно положительно заряженных ионов ионосферу условно делят на слои - D, E, F1 и F2 . Наименьшая концентрация имеет место в слое D, наибольшая - в слое F2 . Состояние ионосферы непрырывно меняется, оно зависит от времени суток, времени года и солнечной активности, которая имеет 11‑летний цикл изменения.
Слой D располагается до высоты примерно 60 км. В ночные часы слой D преобладает рекомбинация электронов и ионизация уменьшается или исчезает.
Слой Е расположен на высоте 100-120 км и менее зависит от времени суток.
Слои F1 и F2 занимают области на высоте примерно 160-400 км, причем ночью слой F1 исчезает.
В ионосфере происходит преломление, отражение и поглощение радиоволн. Преломление радиоволн обусловлено изменениями диэлектрической проницаемости, а, следовательно, показателя преломления по высоте слоев. По мере распространения радиоволн от наземного источника через более высоко расположенные слои показатель преломления уменьшается, траектория электромагнитной волны искривляется и при определенных условиях волна возвращается на Землю.
Отражение радиоволн на той или иной высоте ионосферы зависит от частоты радиоволн и угла их падения на слой. При прочих равных условиях чем больше угол падения волны, отсчитываемый от вертикальной линии в точке падения, тем более полога траектория луча в ионосфере и тем меньшая электронная концентрация потребуется для возвращения луча на Землю. Минимальное значение угла падения, при котором еще возможно отражение радиоволн от ионосферы называется критическим. При угле падения, меньшем критического, радиоволны проходят через ионосферу не отразившись.
Так как коэффициент преломления уменьшается с увеличением частоты, то длинные волны преломляются сильнее, чем короткие, а для УКВ преломление недостаточно для возвращения волн на Землю и они уходят в космическое пространство. Наивысшая частота, при которой электромагнитная волна еще может возвратиться на Землю, называется максимально применимой частотой. Но значение этой частоты неоднозначно вследствие зависимости ее от угла падения. Поэтому вводят понятие критической частоты, которая является максимально применимой частотой при угле падения 90 градусов. Из определения следует, что эта частота представляет собой низшую из всех максимально применимых частот.
За счет многократного переотражения радиоволн от слоев ионосферы и земной поверхности электромагнитная волна может распространяться на большие расстояния вплоть до огибания Земли. Но при переотражениях возникают зоны молчания, куда не попадают отраженные от ионосферы электромагнитные лучи. В зонах приема происходит интерференция волн, прошедших разный путь от излучателя и имеющих, следовательно, различные фазы. Случайный характер изменения фаз приводит к случайному изменению амплитуды результирующей волны, которое называется замиранием или федингом.
Степень поглощения радиоволн в атмосфере увеличивается при повышении плотности ионизации, частоты колебания и пути, проходимой радиоволной в ионосфере. Зимой, когда концентрация электронов в связи с понижением солнечной радиации уменьшается, поглощение радиоволн снижается и дальность распространения увеличивается. В зависимости от частоты колебания радиоволн характеристики среды распространения имеют следующие особенности.
1. Километровые (длинные) волны обладают хорошей дифракцией, сравнительно слабо поглощаются земной поверхностью и могут распространяться поверхностным лучом на расстояние до 3000 км. В ионосфере они затухают сильнее, но могут отражаться от слоя Е и распространяться пространственным лучом на большее расстояние. К преимуществам электромагнитной волны в этом диапазоне как носителя информации относится, кроме большой дальности распространения, сравнительное постоянство напряженности поля в пункте приема в течение суток и года, что обеспечивает устойчивость связи. Эти волны применяются также для связи под водой, где плохо распространяются волны более высоких частот.
Недостатком длинноволновой радиолинии является плохая излучательная способность антенн, их большие размеры, достигающие несколько сотен метров, высокий уровень атмосферных и промышленных помех и малая пропускная способность.
2. Гектометровые (средние) волны могут распространяться поверхностным и пространственным лучами. Энергия средних волн поглощаются земной поверхностью сильнее, чем энергия длинноволновых, поэтому дальность связи поверхностным лучем составляет примерно 500 - 1500 км. Однако для средних волн создаются более благоприятные условия распространения пространственным лучом и прием сигналов возможен до 4000 км.
Условия распространения средних волн существенно изменяются в зависимости от времени суток. В ночные часы за счет отражения от ионосферы дальность распространения выше, чем в дневные, когда преобладают поверхностные волны. В этом диапазоне наблюдаются замирания в результате интерференции земных и поверхностных волн или пространственных волн с различными путями распространения, высокий уровень атмосферных и промышленных помех. Антенны в среднем диапазоне по устройству в основном такие же, как и антенны в длинноволновом, но в силу большей близости их геометрических размеров к длинам волн имеют больший коэффициент усиления. Радиоволны в этом диапазоне используются для радиовещания и связи, на флоте и в авиации.
3. При распространении коротких волн дальность поверхностного луча невелика из-за резкого возрастания поглощения энергии в Земле. Поле в точке приема создается в основном за счет отражения от различных слоев ионосферы. В результате флюктуации плотности и высоты слоев и взаимодействия лучей на коротких волнах, как правило, наблюдаются глубокие замирания и даже полное пропадание связи в течение нескольких десятков секунд.
Для обеспечения круглосуточной связи в условиях суточного изменения ионосферы необходимо производить периодическую смену частот. Определение оптимальных частот производится специальными службами наблюдения за ионосферой по результатам вертикального и вертикально-наклонного зондирования ее радиоимпульсами. Наиболее благоприятные условия прохождения волн днем чаще складываются на волнах в интервале 10-25 м, а ночью - 35-70 м.
В диапазоне коротких волн на напряженность поля и характер ее изменения в точке приема влияют другие явления, такие как «вспышки» на Солнце, рассеяние волн на мелких неоднородностях ионосферы, повороте плоскости поляризации.
Достоинством коротких волн является возможность обеспечения связи на очень большие расстояния при сравнительно малых мощности передатчика и габаритах антенны, а также малое влияние атмосферных и промышленных помех. Они применяются для связи, радионавигации, радиовещании и радиолюбителями.
4. В диапазоне ультракоротких (метровых) и более коротких волн практически отсутствует дифракция. Поэтому они распространяются в пределах прямой видимости, в том числе отражаясь от земли и тропосферы с потерей части энергии на поглощение. Радиоволны в этих диапазонах являются основными носителями информации в сетях телекоммуникаций человечества в силу следующих особенностей:
- имеют огромный частотный диапазон (см. табл. 4.3), обеспечивающий возможность передачи огромного объема информации, в том числе путем использования широкополосных каналов;
- низкий уровень атмосферных и промышленных помех, позволяющих использовать приемные устройства с высокой чувствительностью, что повышает дальность приема;
- слабое влияние станционных помех на работу других радиосистем вследствие ограниченности их радиуса видимости;
- возможность создания небольших антенн с узкой диаграммой направленности, позволяющих осуществлять радиосвязь при относительно малой мощности передающих устройств. Основным недостатком радиоволн рассматриваемого диапазона - малая дальность распространения и существенно большее поглощение их природными осадками (дождем, туманом, снегом, градом), особенно в миллиметровом и более коротких диапазонах.
Результаты сравнительного анализа характеристик радиоволн различных диапазонов приведены в табл. 2.
Таблица 2.
Для повышения дальности связи применяют следующие методы:
- подъем передающей или приемной антенн с помощью инженерных конструкций (матч, башен) и летно-подъемных аппаратов (аэростатов);
- ретрансляция радиосигналов с помощью наземных и космических ретрансляторов;
- использование тропосферных волн в УКВ диапазоне.
Передающие антенны на башнях устанавливаются для постоянного обеспечения связи, радио и телевизионного вещания в городах, районах и областях. Для периодического и эпизодического приема сигналов от отдаленных источников в качестве носителей приемников сигналов используют привязные аэростаты. Информация с них на землю передается по кабелю или радиоканалу.