Доклад: Сопряженная однородная задача
должен быть отличным от нуля. Чтобы иметь возможность сравнить эти результаты с теми. которые были получены в предыдущем параграфе, предположим. что . Далее, выберем такие и , чтобы строки матрицы А были линейно независимы.
Например, положим и .
При этом матрица А примет вид:
(21).
Из формулы (19) следует, что .
Тогда
(22)
Подставляя матрицы (20) и (9) в соотношение (14) имеем (14а):
Следовательно, граничные условия сопряженной задачи имеют вид:
(22)
(23)
Для того, чтобы краевые задачи были самосопряженными необходимо, чтобы и чтобы каждая из компонент и являлась линейной комбинацией и . Как указывалось выше, тогда и только тогда, когда . При этом условия (21) и (20) принимают вид:
(24)
Разрешая равенства относительно и при и заменяя на , получаем:
(25)
Сравнивая граничные условия (24) и (25), заключаем, что они совпадают тогда и только тогда, когда:
(26)
Краевая задача при самосопряжена тогда и только тогда, когда выполнены соотношения (24) и равенство .
Условие разрешимости.
Определив сопряженную краевую задачу, вернемся к решению неоднородной задачи. Используя определение (25), перепишем формулу Грина в виде:
(27)
,
тогда из соотношения (27) вытекает, что условие разрешимости имеет вид:
(27)
Для того, чтобы сравнить условие (27) с условием разрешимости, используем связь и с вектором , описываемую формулой (14а) т.е.:
(28)
При этом соотношение (27) принимает вид:
Если иметь дело с граничными условиями общего вида можно выразить какие-либо два из граничных значений через два других.