Книга: Електростатика
dEy = dEcos = = .
Величину радіуса-вектора r виразимо через відстань а і кут :
r = .
З урахуванням останнього одержимо:
dEy = . (6.3.5)
Інтегруємо останній вираз у межах зміни від 0 до , помноживши весь вираз на 2 (враховується друга, симетрична частина нитки).
.
Таким чином одержано досить просту залежність напруженості електричного поля біля довгої, рівномірно зарядженої нитки або циліндра:
Е = . (6.3.6)
Паралельна складова напруженості Е x , завдяки симетричності нитки, буде дорівнювати нулю.
Знайдемо потік вектора напруженості електричного поля крізь замкнену поверхню ( рис. 6.9)
Рис. 6.9
, (6.3.7)
де - величина площі заштрихованої поверхні, - нормаль до поверхні (одиничний вектор).
З рисунка видно, що
де - тілесний кут.
Площа поверхні кулі (тут є тілесним кутом).
Таким чином одержуємо:
. (6.3.8)
Інтегруємо цей вираз у межах замкнутої поверхні і повного тілесного кута для цієї поверхні, тобто
.
Одержаний вираз носить назву теореми Гаусса
. (6.3.9)
Якщо замкнута поверхня охоплює систему зарядів, теорема Гаусса набуде вигляду
. (6.3.10)
Потік вектора напруженості електричного поля крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі всіх зарядів у середині цієї поверхні, поділених на 0 .
Покажемо на прикладах, як використовується теорема Гаусса у найпростіших випадках.
Приклад 1. Електричне поле біля безмежної, рівномірно зарядженої, із поверхневою густиною зарядів σ, площини ( рис. 6.10).