Книга: Електростатика

dEy = dEcos = = .

Величину радіуса-вектора r виразимо через відстань а і кут :

r = .

З урахуванням останнього одержимо:

dEy = . (6.3.5)

Інтегруємо останній вираз у межах зміни  від 0 до , помноживши весь вираз на 2 (враховується друга, симетрична частина нитки).

.

Таким чином одержано досить просту залежність напруженості електричного поля біля довгої, рівномірно зарядженої нитки або циліндра:

Е = . (6.3.6)

Паралельна складова напруженості Е x , завдяки симетричності нитки, буде дорівнювати нулю.

Знайдемо потік вектора напруженості електричного поля крізь замкнену поверхню ( рис. 6.9)

Рис. 6.9

, (6.3.7)

де - величина площі заштрихованої поверхні, - нормаль до поверхні (одиничний вектор).

З рисунка видно, що

де - тілесний кут.

Площа поверхні кулі (тут є тілесним кутом).

Таким чином одержуємо:

. (6.3.8)

Інтегруємо цей вираз у межах замкнутої поверхні і повного тілесного кута для цієї поверхні, тобто

.

Одержаний вираз носить назву теореми Гаусса

. (6.3.9)

Якщо замкнута поверхня охоплює систему зарядів, теорема Гаусса набуде вигляду

. (6.3.10)

Потік вектора напруженості електричного поля крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі всіх зарядів у середині цієї поверхні, поділених на 0 .

Покажемо на прикладах, як використовується теорема Гаусса у найпростіших випадках.

Приклад 1. Електричне поле біля безмежної, рівномірно зарядженої, із поверхневою густиною зарядів σ, площини ( рис. 6.10).

К-во Просмотров: 323
Бесплатно скачать Книга: Електростатика