Контрольная работа: Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности

Требуемая степень очистки газов и их начальная запыленность позволяют выбрать тип аппарата. Расход очищаемых газов позволяет оценить минимальную единичную производительность аппаратов.

Сведения о возможности утилизации пыли уточняют метод очистки газов и дают возможность выбрать способ транспортировки уловленного продукта.

Состав газов, их агрессивность, взрывоопасность, токсичность дают дополнительные сведения о типах пригодного оборудования, материалах для его изготовления, возможности расположения установок на открытой площадке. Сведения о возможных форсировках технологического процесса вынуждают предусматривать резервные пылеуловители, требующие постоянного расхода пылегазового потока и строго определенной аэродинамической ситуации в рабочих сечениях.


Таблица 1.2

Пылеунос из печей огнеупорного производства

Размеры печи, м

Характеристика

печи

Сырье Фракции пыли, мкм Пылеунос Массовая концентрация пыли в дымовых газах, г/м3 *
кг/т кг/ч
170x4,5 Без теплообменника Магнезит 0-60 145 7000 60

То же

Магнезит+ магнезитовая пыль 0-60 200 10000 100
90х3,6 Без теплообменника Магнезит 0-60 157 4000 40

То же

Магнезит+ магнезитовая пыль

0-60

190 6000 52
С теплообменником Магнезит 0-60 375 9000 85
То же Доломит 5-25 170 5500 45
65х2,5 Без теплообменника Глина 75 800 18
60х2,5 То же Известняк 0-45 83 1200 22

* После котла-утилизатора

После разработки вариантов систем пылеулавливания, оценки их гидравлического сопротивления и ожидаемой эффективности проводится технико-экономическое сравнение, учитывающее результаты аэродинамической оптимизации процесса пылеулавливания.

Трудность выбора рациональной схемы улавливания пыли часто заключается в отсутствии необходимых сведений о физико-химических свойствах и аэродинамических параметрах пылегазовых потоков.

В огнеупорной промышленности основными пылевыделяющими агрегатами являются вращающиеся печи, сушильные барабаны и пересыпные устройства для транспортировки материалов и пыли. При выборе системы пылеулавливания эти установки можно разбить на две группы с характерными параметрами выбросов.

К первой группе относятся пылевыделяющие агрегаты, где происходит термическая обработка сырьевых материалов (печи, сушильные барабаны и др.). При выборе системы пылеулавливания для агрегатов первой группы необходимо учитывать влияние температуры газов, температуру точки росы, дисперсный состав пыли и другие факторы. Однако выбор метода пылеулавливания (механический или электрический) определяет также производительность технологического агрегата. До последнего времени для обеспыливания дымовых газов агрегатов небольшой производительности (до 50·103 м3 /ч) применялись механические пылеуловители.

Парк аппаратов этого типа в производстве огнеупоров достаточно разнообразен – циклоны типов ЦН, СИОТ, ЦП-2; центробежные скрубберы СЦВБ, СЦВП; полые скрубберы СП; насадочные скрубберы СДК; скрубберы Вентури типов ГВПВ, СВ-Кк, СВТ. Широкое распространение получили рукавные фильтры типа ФРМ, с комбинированным способом регенерации (механический в сочетании с аэродинамическим), рукавные фильтры типов УРФМ и ФРМК, со струйной продувкой типа РФСП, общепромышленного назначения типа ФРО и специального назначения ФР, ФРОКТ, ФРОС, ФРКН, ФЭИ, ФРИ и ФРЦИ [2].

В настоящее время, несмотря на увеличение капитальных затрат, чаще применяют электрофильтры, которые при правильном выборе аэродинамических условий эксплуатации обеспечивают гарантированную высокую степень очистки, значительно более высокую, чем дают механические пылеуловители. Различные модификации электрофильтров (ЭГД, ЭВ, ЭГАВ, СРК, ОГП, ГК) достаточно перспективны в производстве огнеупоров [2]. В электрофильтрах равномерное распределение пылегазового потока по рабочему сечению в связи с реальными размерами этих сечений (до 350 м2 ) является первостепенной задачей, определяющей эффективность и коммерческую целесообразность всего технологического процесса. В некоторых случаях рекомендуется установка одного электрофильтра для обеспыливания дымовых газов нескольких агрегатов. Такая схема, например, принята на заводе "Магнезит", где за пятью шахтными печами установлен один электрофильтр с активным сечением 37 м2 .

Ко второй группе относятся пылевыделяющие агрегаты и системы транспорта пылевидных материалов в холодном состоянии. Здесь, в основном, применяются циклонные или тканевые пылеуловители. При этом иногда предусматриваются такие схемы пылеулавливания, в которых одни аппараты обеспечивают преимущественно коагуляцию, другие – осаждение.

В качестве аппаратов, способных выполнять функции коагуляторов, могут быть использованы электрофильтры, циклоны, испарительные скрубберы, акустические генераторы. Это обстоятельство следует иметь в виду, столкнувшись с необходимостью очистки газов от высокодисперсных пылей, так как коагуляторы полидисперсных пылей особо чувствительны к нарушению оптимальной аэродинамической ситуации при движении пылегазовых потоков в рабочей зоне аппаратов. В последние годы особое внимание специалистов привлекают зернистые фильтры с движущимся и неподвижным слоем фильтрующего материала. Эти аппараты позволят совместить технологическую и санитарную очистку газов от пыли, обеспечить нормы ПДВ и перейти в отдельных производствах к технологии с утилизацией пыли [3].

На целесообразность такого пути развития систем пылеулавливания, обеспечивающего переход к безотходной технологии, неоднократно указывали ведущие российские ученые в области механики аэрозолей и пылеулавливания, возглавляемые академиком И.В.Петряновым - Соколовым. Следует отметить, что для зернистых фильтров всех видов успешное решение аэродинамических проблем уже на стадии проектирования является совершенно необходимым условием их успешной эксплуатации. При этом следует использовать надежные расчетные зависимости для оценки степени неравномерности распределения пылегазового потока при различных геометрических формах рабочих сечений пылеуловителей. Стремление к энергосберегающей технологии пылеулавливания требует и уточненный поэлементный расчет гидравлического сопротивления инерционных и вихревых пылеуловителей, используемых в качестве предварительной ступени очистки. Самостоятельный интерес представляет и методика для оценки и прогнозирования зависимости общей и фракционной эффективности пылеулавливания от степени неравномерности распределения пылегазового потока по рабочему сечению пылеуловителей.

2. Пылегазовые выбросы технологических агрегатов

Производство огнеупорных изделий – сложный технологический процесс, связанный с обработкой сырья с различными физико-механическими свойствами и с использованием достаточно сложного технологического оборудования и вспомогательных механизмов. Эти процессы (дробление, помол, сортировка, транспортирование и смешение материалов) связаны с пылевыделением. Выброс пыли происходит и в результате механического уноса фракций газовыми потоками аспирационных систем.

Основными характеристиками пыли, которые следует учесть при усовершенствовании аэродинамических условий эксплуатации систем пылеулавливания в огнеупорном производстве, являются плотность, угол естественного откоса, слипаемость, смачиваемость, абразивность, дисперсность, химический состав, удельное электрическое сопротивление.

Плотность материала частиц пыли определяется пикнометрическим методом. Метод заключается в определении объема жидкости, вытесненной пылью, масса которой известна. Частное от деления массы пыли на вытесненный ею объем жидкости, представляет собой плотность материала частиц пыли. Насыпная плотность пыли определяется по массе известного объема пыли и предусматривает оценку двух величин насыпной плотности: свободно засыпанного и уплотненного слоя пыли. Важное значение при сборе и хранении уловленной пыли имеет угол естественного откоса.

Углом естественного откоса называется угол между горизонтальной поверхностью и образующей конуса насыпанного на нее порошкообразного материала. Различают собственно угол естественного, откоса (αдин ) и угол обрушения (αст ). Первая величина относится к случаю сформирования откоса при падении частиц порошка на плоскость. Образование поверхности откоса соответствует состоянию динамического равновесия, поэтому αдин называют также динамическим углом естественного откоса. Углом обрушения называют угол, образующийся при обрушении слоя в результате удаления подпорной стенки. Его также называют углом естественного откоса αст .

Смачиваемость пыли определяется методом пленочной флотации. Метод основан на определении доли массы затонувших за определенное время частиц пыли, насыпанной тонким слоем на поверхность воды.

Метод определения слипаемости пыли основан на измерении усилия, необходимого для разрыва специально сформированного слоя пыли определенной площадки. Оценка абразивности пыли состоит в определении степени абразивного износа пластинки из исследуемой марки стали (пластинка располагается под углом 45° к пылевой струе). Испытания образца проводятся с помощью абразивметра центробежного типа.

Дисперсный состав пылей определяют различными способами – от ситового анализа до использования струйного сепаратора (импактора).

Ситовый анализ уловленной пыли основан на механическом разделении частиц по крупности путем просева через сита с различными размерами отверстий.

К-во Просмотров: 201
Бесплатно скачать Контрольная работа: Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности