Контрольная работа: Аксиоматика теории вероятностей

Каждому элементарному исходу wi ставят в соответствие положительное число pi – вероятность этого исхода, причем сумма pi (по i) = 1.

По определению, вероятность Р (А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного – нулю, произвольного – заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/n. Пусть событию А благоприятствует mисходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

P ( A )=1/ n + 1/ n + 1/ n .

Учитывая, что число слагаемых равно m, имеем:

Р(А) = m \ n .

Получено классическое определение вероятности.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо. Уже это обстоятельство указывает на ограниченность классического определения. Отмеченный недостаток может быть преодолен, в частности, введением геометрических вероятностей и, конечно, использованием аксиоматической вероятности.

Наиболее слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. Обычно о равновозможности элементарных исходов испытания говорят из соображений симметрии. Так, например, предполагают, что игральная кость имеет форму правильного многогранника (куба) и изготовлена из однородного материала. Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение : в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка к числу 0,4, то это число можно принять за статистическую вероятность события.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности. Действительно, если событие достоверно, то m= nи относительная частота

m \ n = n \ n = 1, т.е. статистическая вероятность достоверного события (так же как и в случае классического определения) равна единице.

Если событие невозможно, то m= 0 и, следовательно, относительная частота

0/ n= 0, т.е. статистическая вероятность невозможного события равна нулю.

Для любого события 0 < или = m < или = n и, следовательно, относительная частота

0 < или = m/ n < или =1, т.е. статистическая вероятность любого события заключена между нулем и единицей.

Для существования статистической вероятности события А требуется:

а) возможность, хотя бы принципиально, производить неограниченно число испытаний, в каждом из которых событие А наступает или не наступает;

б) устойчивость относительных частот появления А в различных сериях достаточно большого числа испытаний.

Недостатком статистического определения является неоднозначность статистической вероятности; так как в качестве вероятности события можно принять не только 0,4, но и 0,39; 0,41 и т.д.

2.3 Условная вероятность

Во многих случаях вероятности появления одних событий зависят от того, произошло другое событие или нет. Например, вероятность своевременного выпуска машины зависит от поставки комплектующих изделий. Если эти изделия уже поставлены, то значение искомой вероятности будет одним. Если же она определяется до поставки комплектующих, то ее значение, очевидно, будет другим.

Вероятность события А, вычисленная при условии, что имело место другое событие В, называется условной вероятностью события А и обозначается Р (А/В).

В тех случаях, когда вероятность события А рассматривается при условии, что произошли два других события В и С, используется условная вероятность относительно произведения событий В и С:

Р (А/ВС).

3. Формулы умножения и сложения вероятностей

3.1 Основные формулы комбинаторики

Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них.

Перестановками называют комбинации, состоящие из одних и тех же nразличных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Pn = n ! ,

К-во Просмотров: 218
Бесплатно скачать Контрольная работа: Аксиоматика теории вероятностей