Контрольная работа: Аксиоматика теории вероятностей
Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.
Пример. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?
Решение. Искомое число трехзначных чисел
Р3 = 3! =1*2*3 = 6.
Размещениями называют комбинации, составленные из nразличных элементов по mэлементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений:
Am n = n ( n -1) ( n -2) … ( n - m +1).
Пример. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?
Решение. Искомое число сигналов: А2 6 = 6*5 = 30.
Сочетаниями называют комбинации, составленные из nразличных элементов по mэлементов, которые отличаются хотя бы одним элементом. Число сочетаний
Cm n = n ! / ( m ! ( n - m )!).
Пример. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?
Решение, Искомое число способов: С2 10 = 10! / (2!*8!) = 1*2*3*4*5*6*7*8*9*10 / 1*2* 1*2*3*4*5*6*7*8 = 45.
Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством
Am n = Pm * Cm n .
При решении задач комбинаторики используют следующие правила:
Правило суммы . Если некоторый объект А может быть выбран из совокупности объектов mспособами, а другой объект В может быть выбран nспособами, то выбрать либо А, либо В можно m+n способами.
Правило произведения. Если объект А можно выбрать из совокупности объектов mспособами и после каждого такого выбора объект В можно выбрать nспособами, то пара объектов (А, В) в указанном порядке может быть выбрана m*nспособами.
3.2 Примеры вычисления вероятностей
Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.
Решение. Обозначим через А событие – набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
Р (А) =1/10.
Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
Решение. Обозначим через В событие – набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т.е. А2 10 = 10*9 = 90. Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
Р (В) = 1/90.
Пример 3. Указать ошибку «решения» задачи: «Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие А)».
Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию А благоприятствует один исход: общее число исходов равно двум. Следовательно, искомая вероятность:
Р (А) =1/2.
Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.
Правильное решение. Общее число равновозможных исходов испытания равно 6*6 = 36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность: