Контрольная работа: Аналіз та статистичне моделювання показників використання вантажних вагонів
0,0183
средня
5393.0
60,728
34,035
35,24
0,0316
Y— середньодобова продуктивність вагона, експл. ткм нетто;
X(qrg )— динамічне навантаження навантаженого вагона, т/ваг;
V— середня дільнична швидкість, км/год;
Z простій вагона під однією вантажною операцією, год;
1/Z — обернена величина Z, в модель закладено гіперболічну
залежність від Y.
В таблиці 3 (допоміжних розрахунків) наведено відповідно:
— квадрати вихідних показників (гр. гр. 1-4);
— добутки Yокремо з кожним факторним показником (гр. гр. 5-7);
— добутки факторних показників між собою попарно (гр. гр. 8-10).
3. Побудова статистичної моделі середньодобової продуктивності вантажного вагона (FW )
Для виявлення кількісного впливу факторних чинників на узагальнюючий (інтегральний) показник використання вантажних вагонів Fw , як відмічено вище, проведено статистичне моделювання (кореляцій-но-регресійний аналіз). Попереднє дослідження статистичних звітних матеріалів усіх залізниць України (вибірка — 48 спостережень, див. таблицю вихідної інформації (табл. 2) довело, що саме ці чинники мають тісний імовірнісний зв'язок з результативною ознакою (Y ).
Так, парні коефіцієнти кореляції — r (міра щільності зв'язку) між результативною ознакою Y і факторним чинником Vrw , між Y та 1/Z— rгш = 0,541, між Y і X — від'ємне значення rYX = —0,449 (Y і X функціонально пов'язані). Це досить щільний зв'язок, що свідчить про суттєвий вплив відібраних до складу моделі факторів на середньодобову продуктивність вантажних вагонів.
У той же час, між самими факторами V і 1/Z спостерігається незначний рівень тісноти зв'язку (Z=0,0129), тобто вони не дублюють один одного і не викривлюють величину впливу факторів на результативний показник.
У досліджуваній статистичній моделі середньодобової продуктивності вантажного вагона Fw трьохфакторне рівняння регресії має такий загальний вигляд:
Y= a0 +a1 X+a2 (1/z)+a3 V. (4)
Числові значення параметрів цієї моделі (а0 , а1 а2 , а3 ) визначаються методом найменших квадратів за допомогою системи нормальних рівнянь. Вони повинні задовольняти вимозі найменшої суми квадратів відхилень фактичних значень у від теоретичних значень Y, розрахованих за рівнянням регресії:
∑(Vф -Y)2 =тіп. (5)
Система нормальних рівнянь складається за загальними правилами математичної статистики:
(6)
Для визначення числових значень параметрів рівняння регресії (а0 , аь а2 , а3 ) у систему нормальних рівнянь (6) підставляються підсумкові дані таблиць вихідних та допоміжних розрахункових даних (табл. 2, 3): Y, X, V, 1/Z — значення першого ступеня (гр. 1, 2, 3, 5 табл. 2), їх квадратів, добутків результативного показника К окремо з кожним фактором та добутків факторних показників між собою попарно (табл. 3):
48а0 +2914,96а1 + 1.5173а2 + 1633.7а3 =258864,0