Контрольная работа: Чисельне інтегрування та наближення функцій поліномами вищого порядку
Чергове k-е наближення:
В якості малої величини беремо задану точність обчислень , тоді розрахункова формула має вигляд:
При уточненні коренів рівняння методом січних користуємось наступними формулами:
Для першого наближення:
Для подальших наближень:
Завдання № 3,4
Наближення функцій поліномами вищого порядку
Функція y=f(x) задана таблицею значень у точках . Використовуючи метод найменших квадратів (МНК), знайти многочлен найменшого середньоквадратичного наближення оптимальної степені m=m*. За оптимальне значення m* прийняти ту степінь многочлена, починаючи з якої величина стабілізується або починає зростати.
Вихідні дані:
Варіант 2 | |||||||||||||||
x | 0 | 0,375 | 0,563 | 0,75 | 1,125 | 1,313 | 1,5 | 1,690 | 1,875 | 2,063 | 2,25 | 2,438 | 2,625 | 2,813 | 3 |
y | 4.568 | 3,365 | 2,810 | 2,624 | 0,674 | 0,557 | 0,384 | -0,556 | -1,44 | -1,696 | -1,91 | -2,819 | -3,625 | -3,941 | -4,367 |
Хід виконання:
1. Задаємо вектори x та y вихідних даних.
2. Використовуючи метод найменших квадратів, знаходимо многочлени Pm, m = 0,1,2... Розраховуємо відповідні їм значення .
3. Будуємо гістограму залежності від m, на основі якої вибратємо оптимальну степінь m* многочлена найкращого середньоквадратичного наближення.
4. На одному графіку будуємо многочлени Pm , m = 0,1,2,..., m*, і точковий графік вихідної функції.
Реалізація у MS Excel:
Визначаємо матрицю Х як суму відповідних хі у відповідних степенях та уі *хі j
За допомогою отриманих даних, будуємо, для полінома кожної степені, відповідну матрицю Х:
Визначаємо обернені матриці Х-1 до відповідних матриць Х, використовуючи вбудовану функцію Excel МОБР(....).
Визначаємо коефіцієнти відповідних поліномів, для чого визначаємо добуток матриць Х-1 та B, використовуючи вбудовану функцію МУМНОЖ(....).
Використовуючи визначені коефіцієнти поліномів аі , визначаємо значення даних поліномів у кожній точці хі .
Будуємо графік отриманих поліномів та вихідних даних: вихідні дані – точковий графік, розрахункові дані – лініями різного типу.
Визначаємо величину для кожного полінома та будуємо гістограму: