Контрольная работа: Числові методи
Виконав
студент 2-го курсу
кафедри ЕОМ
Перевірив
м. Чернівці
Завдання 1
Задана СЛАР
а) розв’язати цю систему методом Гауса за схемою з частковим вибором головного елементу;
б)розв’язати цю систему за формулою
.
– вектор невідомих, – вектор вільних членів, – обернена матриця до матриці з коєфіцієнтів при невідомих.
Обернену матрицю знай ти методом Гауса - Жордана за схемою з частковим вибором головного елемента.
Рішення.
а) Прямий хід методу Гауса.
()
Запишемо матрицю .
1-й крок.
Серед елементів першого стовпчика шукаємо максимальний:
Перше і друге рівняння міняємо місцями.
Розділимо рівняння (1) на 2.5
(1)
Від рівняння (2) віднімемо 1.7Р1 .
(2)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--