Контрольная работа: Числові методи

a[1,0]= 1.0500 a[1,1]= 0.4793 a[1,2]= -0.3107 a[1,3]= 0.0118

a[2,0]= 1.0960 a[2,1]= 0.4525 a[2,2]= 0.0429 a[2,3]= -0.0068

a[3,0]= 1.1410 a[3,1]= 0.4407 a[3,2]= -0.1607 a[3,3]= 0.0054

в) Розіб’ємо відрізок на частин.

Складова формула Сімпсона буде мати вигляд:

;

де - крок розбиття, – значення функції в точках сітки.

Замінимо значеннями кубічних сплайнів із пункту б) цього завдання.

Для оцінки похибки використаємо правило Рунге. Для цього обчислимо наближені значення інтегралу з кроком (), а потім з кроком ().

За наближене значення інтегралу, обчисленого за формулою Сімпсона з поправкою по Рунге приймемо: .

//------------------------------------------------------------

// Work2_3.cpp

//------------------------------------------------------------

// "Числові методи"

// Завдання 2

// Обчислення інтегралу методом Сімпсона з використанням кубічного сплайну

#include <stdio.h>

#include <iostream.h>

#include <conio.h>

#include <math.h>

// визначення сплайнового класу

class Tsplain

{public:

int kol; // кількість рівнянь (відрізків розбиття)

float ** Ak; // масив коефіцієнтів

float * Xi; // вектор початків відрізків

float vol(float x); // функція повертає значення сплайну в точці х

Tsplain(int k); // constructor};

К-во Просмотров: 647
Бесплатно скачать Контрольная работа: Числові методи