Контрольная работа: Числові методи
Якщо , то ,
де – матриця обернена до матриці Якобі.
Таким чином послідовне наближення кореня можна обчислити за формулою
або
.
Умовою закінчення ітераційного процесу наближення корення вибираємо умову
,
– евклідова відстань між двома послідовними наближеннями ;– число, що задає мінімальне наближення.
Для рішення систем нелінійних рівнянь за даним алгоритмом призначена програма
Work3.cpp
//------------------------------------------------------------
// Work3.cpp
//------------------------------------------------------------
// "Числові методи"
// Завдання 3
// Розв’язування системи нелінійних рівнянь методом Ньютона
#include <stdio.h>
#include <iostream.h>
#include <conio.h>
#include <math.h>
#include "matrix.h"
const int N=2; // степінь матриці Якобі (кількість рівнянь)
typedef void (*funcJ) (float[N], float[N][N]);
void fJakobi(float X[N],float J[N][N])
// функції , які складають матрицю Гессе
{J[0][0]=cos(X[0]); J[0][1]=cos(X[1]);
J[1][0]=2*X[0]; J[1][1]=-2*X[1]+1;}
typedef void (*funcF) (float[N], float[N]);