Контрольная работа: Cтатистическая надежность регрессионного моделирования
Связь между переменными x и y прямая, средняя, близкая к сильной, т.е. величина среднемесячной пенсии в значительной мере зависит от прожиточного минимума в среднем на одного пенсионера в месяц
б) Для определения средней ошибки аппроксимации рассчитываем столбцы
yx , y- yx , Ai :
Ai = y- yx * 100, А = 1/n∑n i =1 Ai
Получаем значение средней ошибки аппроксимации
А = 2,77%
Величина ошибки аппроксимации говорит о хорошем качестве модели.
в) Величина коэффициента детерминации получена с помощью функции
ЛИНЕЙН R2 = rxy 2 = 0,61,
то есть в 61% случаев изменения среднемесячного прожиточного минимума на одного пенсионера приводят к изменению среднемесячной пенсии. Другими словами – точность подбора регрессии 61 % - средняя.
3. Оценка статистической значимости
а) по критерию Фишера:
1. Выдвигаем нулевую гипотезу о статистической незначимости параметров регрессии и показателя корреляции а = b = rxy =0;
2. Фактическое значение критерия получено из функции ЛИНЕЙН
∑(ỹx-y)²/m r²xy0,61
Fфакт= = (n-2) = (13-2) = 1,56*11 = 17,2;
∑(y-ỹ)² /(n-m-1) 1-r²xy 1-0,61
3. Fтабл =4,84
4. Сравниваем фактическое и табличное значения критерия Fфакт> Fтабл , т.е.нулевую гипотезу отклоняем и делаем вывод о статистической значимости и надежности полученной модели.
б) по критерию Стьюдента:
1. Выдвигаем гипотезу о статистически незначимом отличии показателей от нуля: a = b = r²xy = 0;
2. Табличное значение t – критерия зависит от числа степеней свободы и заданного уровня значимости α. Уровень значимости – это вероятность отвергнуть правильную гипотезу.
rxy √(n-m)
t=
√(1- r2 xy )
Где n – количество наблюдений; m – количество факторов.
t= 0,78√(13-2)= 2,59=4,18
√(1-0,61)0,62
3. Фактические значения t-критерия рассчитываются отдельно для каждого параметра модели. С этой целью сначала определяются случайные ошибки параметров mа , mb, mrxy .