Контрольная работа: Дискретная теория поля

2. , k=const

3.

4. Если поверхность разделена на части S1 и S2 , то

5. Если , то

6.

7. Теорема о среднем.

Если функция F(x, y, z) непрерывна в любой точке поверхности S, то существует точка (a, b, g) такая, что

S – площадь поверхности.

Какова бы ни была функция f(x, у, z), определенная в точках поверхности (S) и ограниченная:

,


имеет место равенство

в предположении существования одного из этих интегралов (что влечет за собой и существование другого).

Таким образом, для сведения поверхностного интеграла первого типа к обыкновенному двойному нужно лишь заменить координаты х, у, z их выражениями через параметры, а элемент площади dS— его выражением в криволинейных координатах.

Рассмотрим несколько примеров вычисления поверхностных интегралов.

Пример 1. Вычислить интеграл по верхней стороне полусферы

Решение.

Преобразуем уравнение поверхности к виду:


Заданная поверхность проецируется на плоскость XOY в круг, уравнение которого:

Для вычисления двойного интеграла перейдем к полярным координатам:

К-во Просмотров: 257
Бесплатно скачать Контрольная работа: Дискретная теория поля