Контрольная работа: Дискретная теория поля
Введение
1. Понятие поверхностного интеграла
2. Свойства поверхностного интеграла
3. Поток векторного поля через поверхность
Заключение
Список литературы
Введение
Данная работа посвящена дискретной теории поля.
Цель данной работы рассмотреть дискретную теорию поля.
Задачи:
- Определить понятие поверхностного интеграла.
- Рассмотреть основные свойства поверхностных интегралов.
- Рассмотреть примеры вычисления поверхностных интегралов.
- Рассмотреть поток векторного поля через поверхность, как механический смысл поверхностного интеграла.
Методологической и теоретической основой при написании работы послужила учебная литература и труды отечественных и зарубежных авторов.
1. Понятие поверхностного интеграла
Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1 , S2 ,…, Sn (при этом площадь каждой части тоже обозначим Sn ). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z) (Рис. 1).
Выберем в каждой части Si точку Mi (xi , yi , zi ) и составим интегральную сумму
.
Если существует конечный предел при этой интегральной суммы, не зависящий от способа разбиения поверхности на части и выбора точек Mi , то он называется поверхностным интегралом первого рода от функции f(M) = f(x, y, z) по поверхности S и обозначается
.
Разобьем поверхность Sна части S1 , S2 ,…, Sn , выберем в каждой части Si точку Mi (xi , yi , zi ), и умножим f(Mi ) на площадь Di проекции части Si на плоскость Оху. Если существует конечный предел суммы
,
не зависящий от способа разбиения поверхности и выбора точек на ней, то он называется поверхностным интегралом второго рода от функции f(M) по выбранной стороне поверхности S и обозначается
Подобным образом можно проектировать части поверхности на координатные плоскости Оxzи Оyz. Получим два других поверхностных интеграла 2-го рода:
и .
Рассмотрев сумму таких интегралов по одной и той же поверхности соответственно от функций P(x, y, z), Q(x, y, z), R(x, y, z), получим поверхностный интеграл второго рода общего вида:
Свойства поверхностного интеграла.
Рассмотрим свойства поверхностных интегралов первого рода:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--