Контрольная работа: Дискретный анализ

Содержание

Введение

1.Сколькими способами можно выбрать гласную и согласную буквы из слова «полка»

2.Решить систему уравнений:

3.Решить уравнение:

4.Доказать тождество:

Ø

5.Перечислить элементы множеств AxB и BxA, если , а

6.Упростить выражение


Введение

Основные способы представления информации называются дискретными: это слова и конструкции языков и грамматик – природных и формализованных; табличные массивы реальных данных в технических системах и научно-природных наблюдений; данные хозяйственной, социальной, демографической, исторической статистики и т.п.

Для количественного анализа и вычисления превращений непрерывных процессов приходится их "дискретизировать". Понятно, что математические методы обработки, анализа и превращений дискретной информации необходимы во всех отраслях научной, хозяйственной и социальной сферах. Обычно эти методы изучаются на курсах дискретной математики; иногда применяется определение "конечная математика", или даже "конкретная математика".

Часто для анализа реальных систем с непрерывными конструктивными элементами строятся модели конечной или дискретной математики. Например, классическая транспортная или информационная сеть трактуется как граф с заданными пропускными способностями или массами веток, а геометрическая форма ветки между двумя пунктами-узлами сети не играет роли. Более того, "непрерывное" строение реальной ветки также не работает в сетевой модели: важно, что между двумя узлами а, b сети или нет ветки, или есть ветка с заданными ограничениями c(a, b) объема переноса веществ или информации. В модели хватит задать числа c(a, b) для каждой пары узлов a, b. Если ветки нет, то c(a, b)=0. Такая числовая модель отображения сети идеальна для записи, сохранения и превращений в компьютере.


1.Сколькими способами можно выбрать гласную и согласную буквы из слова «полка»

Решение

Эта задача представляет собой вид классической задачи комбинаторики. Ее разрешение сводится к "правилу произведения". Исходя из которого, если М1 , М2 , М3 , …, Мk – конечные множества и М = М1 х М2 х М3 х … х Мk – их декартовое произведение, то

(1)

Пусть предмет а1 можно выбрать m1 способами, предмет а2 – m2 способами, …, предмет аk – mk способами и пусть выбор предмета а1 не влияет на количество способов выбора предметов а2 , …, аk ; и т.д. Тогда выбор упорядоченного множества предметов (а1 , а2 , …, аk ) в указанном порядке можно выполнить способами.

(2)

Отсюда – если нам необходимо подсчитать сколькими способами можно выбрать гласную и согласную буквы из слова "полка", то сначала выберем гласную – это можно сделать 2 способами (так как их две), после этого каждой гласной добавим согласную (аналогично 3 способа). По правилу произведения выбор упорядоченного множества гласной и согласной букв составит:


Ответ. n = 6.

2.Решить систему уравнений:

Решение

1.Найдем n из формулы дискретного соединения:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 212
Бесплатно скачать Контрольная работа: Дискретный анализ