Контрольная работа: Дослідження однокрокових методів розвязання звичайних диференційних рівнянь
Виконав: ст. гр. 1АМ-04_____ Балко О.О.
Перевірив: доцент каф.АІВТ_____ Кабачій В.В.
2007
Вступ
1 Короткі теоретичні відомості
2 Алгоритми методів
2.1Блок-схеми алгоритмів розв'язку даного диференційного рівняння
3 Вхідні та вихідні дані1
4. Аналіз результатів моделювання
4.1 Розв’язок диференціального рівняння в Mathcad
5. Інструкція користувачу
Висновки
Література
Додаток А. Лістинг програми
Вступ
На даний момент велика роль в розвитку сучасного світу відводиться підвищенню технічного рівня обчислювальної техніки, пристроїв і засобів автоматизації. Це передбачає розвиток виробництва і широке використання промислових роботів, систем автоматичного управління з використанням мікропроцесорів і мікро-ЕОМ, створення гнучких автоматизованих виробництв. Розв'язок цих задач потребує широкого упровадження в інженерну практику методів обчислювальної математики.
Обчислювальна математика заснована на чисельних методах, придатних до застосування при розрахунках на ЕОМ. Сучасні ЕОМ дозволили дослідникам значно підвищити ефективність математичного моделювання складних задач науки і техніки. Нині методи дослідження проникають практично в усі сфери людської діяльності, а математичні моделі стають засобами пізнання.
Значення математичних моделей неперервно зростає у зв'язку з тенденціями до оптимізації технічних пристроїв і технологічних схем планування експерименту. Реалізація моделей на ЕОМ здійснюється за допомогою різноманітних методів обчислювальної математики, яка неперервно удосконалюється.
В даній роботі розглянуті однокрокові методи розв’язання звичайних диференційних рівнянь(на прикладі диференційного рівняння першого порядку), а саме прямий та зворотній методи Ейлера, та метод Рунге-Кутта.
Розробленна програма дозволяє розв’язати вказане диференційне рівняння методами Ейлера (прямим та зворотним) та Рунге-Кутта, порівняти їх результати та визначити похибки
1. Короткі теоретичні відомості
Найбільш простим однокроковим методом, який потребує мінімальних затрат обчислювальних ресурсів, але дає змогу обчислювати результат із порівняно низькою точністю, є метод Ейлера.
В цьому методі для оцінки наступної точки на кривій використовується лише один лінійний член в формулі Тейлора,
(1)
де визначається з початкового рівняння.
Цей процес можна розповсюдити на наступні кроки:
(2)
Метод Ейлера є методом першого порядку
(3)
де ,
,
,
- визначається як
(4)
для всіх і
.
Метод Ейлера, крім значної похибки зрізання часто буває нестійким (малі локальні похибки призводять до значного збільшення глобальної).
Цей метод можна вдосконалити різними способами.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--