Контрольная работа: Эффекты нелинейного преломления

Как уже говорилось, в оптической связи термин ”дисперсия” связывается с уширением импульсов. Также вспомним, что в рабочем диапазоне длин волн:

a) коэффициент преломления n(λ) уменьшается с ростом длины волны λ;

b) фазовая скорость волны vф увеличивается с ростом λ.

c) минимальное значение группового показателя преломления Nгр(λ) – в точке нулевой дисперсии λ0.

Как видно из рисунка 5 дисперсия изменяет знак на длине волны λ = λ0 (для чистого кварца длина волны нулевой дисперсии λ0 = 1,276 мкм). Это значение соответствует точке перегиба кривой n(λ).

Рисунок 5 – Изменение знака дисперсии

Известно, что импульс характеризуется (во времени) не только длительностью и формой, но зависимостью частоты несущей от времени (чирпингом). Импульс на входе в линию промодулирован только по амплитуде, и частота его несущей не зависит от времени (чирпинга нет). Импульс без чирпинга, пройдя через волокно с положительной по знаку хроматической дисперсией, приобретает дополнительную частотную модуляцию (положительный чирпинг) и при этом уширяется. Уширяется импульс потому, что в волокне с дисперсией разные спектральные компоненты импульса движутся с разной скоростью. А положительный чирпинг импульс приобретает потому, что при положительной дисперсии длинноволновые компоненты запаздывают сильнее, чем коротковолновые, при этом происходит, так называемый, набег фазы. Если бы волокно обладало хроматической дисперсией с отрицательным знаком, то импульс бы всё равно уширился, но приобрёл бы при этом отрицательный чирпинг. Это приводит только к появлению зависящего от частоты фазового сдвига между амплитудами его спектральных составляющих. Сам же спектр при этом не меняется (рисунок 6). Поэтому про такой импульс говорят, что он уширен не по Фурье. Таким образом, в линейном приближении дисперсия приводит только к изменению ширины импульса, но не меняет ширину его спектра.

Рисунок 6 - Уширение импульса

Эффект фазовой самомодуляции приводит к уширению спектра импульса. При этом частота несущей на заднем фронте импульса оказывается больше частоты несущей на переднем фронте импульса (отрицательный чирпинг). Нелинейные эффекты из-за повышенной интенсивности волны порождают новые частотные компоненты, что приводит к уширению спектра импульса. И если при этом учесть эффект Керра, то в волокне с нулевой дисперсией импульс приобретает отрицательный чирпинг.

С увеличением мощности излучения в волокне с отрицательной дисперсией ширина импульса увеличивается вследствие того, что длина волны на хвосте импульса оказывается короче длины волны на фронте импульса. А так как в волокне с отрицательной дисперсией скорость распространения волн уменьшается с уменьшением длины волны, то хвост импульса начинает отставать от фронта, и ширина импульса увеличивается.

Рисунок 7 – Чирп-эффект в волокне с отрицательной дисперсией


В волокне с положительной дисперсией (рисунок 8) хвост импульса (с более короткими волнами) ускоряется, а фронт (с более длинными волнами) замедляется, что и приводит к сжатию импульса. Следует учесть, что сжатие импульса имеет место только при не слишком большой мощности, когда уширение импульса из-за эффекта Керра ещё мало. При большой мощности уширение импульса (из-за эффекта Керра) становится уже основным фактором, определяющим ширину импульса при его распространении в волокне с дисперсией. Такой импульс уширяется независимо от знака дисперсии волокна.

При некотором промежуточном значении мощности в волокне с положительной дисперсией эффект Керра уравновешивает влияние дисперсии. Другими словами, в то время, как дисперсия пытается сделать импульс более широким, эффект Керра обеспечивает его сжатие. Если оба эффекта сбалансированы, то форма импульса не изменяется. Такие импульсы называются солитонами. Солитон (soliton) – оптический импульс, не подвергающийся дисперсии при передаче на дальнее расстояние. Их применение в оптической связи весьма перспективно и в настоящее время сдерживается только стремительным развитием DWDM систем.

Рисунок 8 - Чирп-эффект в волокне с положительной дисперсией


Перекрестная фазовая модуляция (ХРМ – Cross-Phase Modulation) очень схожа с SPM, но рассматривается уже применительно к двум и более оптическим каналам, то есть применительно к ВОСП со спектральным мультиплексированием (CWDM/DWDM системам). Точно также, как и при SPM, возникает изменение рефракционного индекса n при увеличении интенсивности света. В WDM-системах с большим количеством каналов изменение линейной частотной модуляции импульса в одном канале зависит от вариации показателя преломления из-за интенсивности других каналов, усиливая SPM. Так как канальные уровни мощностей в CWDM/DWDM системах примерно одинаковы, то при ХРМ эффекте эффект увеличивает нелинейный фазовый сдвиг примерно в 2N раз, где N – число задействованных оптических каналов в ОВ. ХРМ приводит к таким же искажениям импульсов, как и SPM, только еще в большей степени. Характерно отметить, что эффект ХРМ в большей степени зависит от дисперсии ОВ по сравнению с SPM, что в свою очередь обуславливает необходимость увеличения запаса по дисперсии.

Для снижения влияния ХРМ необходимо выбирать оптические волокна с максимально возможной эффективной площадью сечения (данное замечание относится ко всем видам искажений) и, по возможности, снижать канальный уровень оптической мощности (см. рисунок 9).

Рисунок 9 – Зависимость нелинейных эффектов от уровня оптической мощности


Важно также отметить, что ХРМ приводит также к появлению амплитудных искажений временного джиттера (рисунок 10). Эти искажения проявляются тем сильнее, чем выше скорость передачи и меньше интервал частот между каналами. Исследования в этом направлении стали интенсивно проводиться только в самое последнее время.

Рисунок 10 – Амплитудные искажения и временной джиттер оптических импульсов при XPM

Интермодуляция (IM – InterModulation) аналогична SPM и ХРМ, но рассматривается для нескольких каналов. Как и в выше рассмотренных случаях, величина рефракционного индекса изменяется пропорционально интенсивности оптической мощности. Так, например, если в ОВ присутствуют две независимые волны l1 и l2, то n будет изменяться синхронно их суммарной мощности, что вызовет появление комбинационных составляющих, то есть новых двух волн, близлежащих по частотному диапазону : и . Такое явление подобно множеству способов формирования нелинейности при четырехволновом смешении (FWM).

Модуляционная нестабильность (MI –Modulation Instabliting) наблюдается только в ОВ с положительной дисперсией. Во временном представлении MI проявляется в виде пичков на импульсах (рисунок 11 а), а в спектральном – как уширение спектра импульса (рисунок 11 б).

Появление пичков на импульсах связано с эффектом самовоздействия волн. Этот эффект приводит к тому, что длина волны на заднем фронте импульса оказывается короче длины волны на переднем фронте. Волокно с положительной дисперсией ускоряет волну заднего фронта сильнее, чем более длинную волну переднего фронта. Когда задний фронт входит во взаимодействие с передним фронтом, возникает интерференция, которая и служит причиной образования пичков на передаваемых импульсах. После взаимодействие с передним фронтом, возникает интерференция, которая и служит причиной образования пичков на передаваемых импульсах. После детектирования оптического сигнала и последующей электрической фильтрации амплитуда пичков уменьшается так, что они не оказывают существенного влияния на работу систем протяженностью менее 1000 км.

К-во Просмотров: 202
Бесплатно скачать Контрольная работа: Эффекты нелинейного преломления