Контрольная работа: Эконометрическое моделирование временных рядов
Задача 1
За год на предприятии были выпущены семь партий продукции, для каждой из которых были определены издержки. Вычислить сумму издержек для следующего плана выпуска.
линейный экономический моделирование
Таблица 1.1.Данные о планируемом выпуске изделий
ед.прод. тыс.шт. | затраты, руб. |
2,2 | ? |
3,9 | ? |
5,5 | ? |
Таблица 1.2.Данные о выпущенных партиях
ед.прод.тыс.шт. | затраты, руб. |
1 | 30 |
2 | 70 |
4 | 150 |
3 | 100 |
5 | 170 |
6 | 215 |
8 | 290 |
Задача относится к разделу Парная регрессия, т.к. в ней даны один независимый параметр (единицы продукции, обозначим как х) и зависимый параметр (затраты, обозначим у).Прежде чем выбирать вид аппроксимирующей зависимости следует представить исходные данные графически.
Предполагаем линейную зависимость между х и у
Y=a+bx
Для определения параметров a,b используем метод наименьших квадратов
∑( y –(a+bx))² → min
Функция минимальна, если равны нулю ё, частные производные по параметрам т.е.:
y’a = ∑ (2( y-abx)(-1))=0
y’b = ∑ (2 ( y-a-bx)(-x))=0
или
na+b∑x =∑y,
a ∑x +b ∑x² =∑xy (1)
Система уравнений (1) однозначно определяет параметры a и b – это система двух уравнений с двумя неизвестными. Все остальные величины можно определить из исходных данных :
n- количество исходных точек,
∑x ∑y - суммарные значения параметров х и у по всем точкам,
∑xy - суммарное значение произведения параметров,
∑x²- суммарное значение квадрата величины х.
Рассчитаем коэффициенты линейного уравнения парной регрессии:
Σx^2 = (x^2) - cp –(xcp)^2
b= (cp(y*x) – cp(y)*cp(x))/(σx^2) (2)
a = cp( y) - b*cp(x)
Где индекс cp обозначает среднее значение данной величины, т.е. суммарное значение данной величины надо разделить на n.
Составим таблицу в редакторе Excel.
Таблица 1.3
n | x | y | xy | x^2 |
1 | 1 | 30 | 30 | 1 |
2 | 2 | 70 | 140 | 4 |
3 | 4 | 150 | 600 | 16 |
4 | 3 | 100 | 300 | 9 |
5 | 5 | 170 | 850 | 25 |
6 | 6 | 215 | 1290 | 36 |
7 | 8 | 290 | 2320 | 64 |
итого | 29 | 1025 | 5530 | 155 |
среднее | 4,14 | 146,43 | 790,00 | 22,14 |
σ² | 4,98 |
--> ЧИТАТЬ ПОЛНОСТЬЮ <--