Контрольная работа: Эконометрическое моделирование временных рядов

Рассчитываем коэффициенты линейного уравнения парной регрессии:

σx^2= (x^2)cp = (xcp)^2

b= (cp(y*x) –cp(y)*cp(x))/(σx^2) (5)

a= cp(y) –b*cp(x)

Таблица 2.2.Линейная регрессия y=a+bx

n y x yx y^x y-y^x
1 68,80 45,10 3102,88 2034,01 4733,44 61,65 7,15
2 61,20 59,00 3610,80 3481,00 3745,44 56,88 4,32
3 59,90 57,20 3426,28 3271,84 3588,01 57,49 2,41
4 56,70 61,80 3504,06 3819,24 3214,89 55,92 0,78
5 55,00 58,80 3234,00 3457,44 3025,00 56,95 -1,95
6 54,30 47,20 2562,96 2227,84 2948,49 60,93 -6,63
7 49,30 55,20 2721,36 3047,04 2430,49 58,18 -8,88
8 61,00 55,12 3362,32 3038,21 3721,00 58,21 2,79
итого 466,20 439,42 25524,66 24376,62 27406,76 x 0
среднее значение 58,28 54,93 3190,58 3047,08 3425,85 x x
σ² 29,87 30,05 х х х х х
σ 5,47 5,48 х х х х х

Коэффициенты линейного уравнения парной регрессии можно определить из двух систем уравнений с двумя переменными(4):

8a+439.42b=466.2

439.4a+24376.62 b=25524.66

В результате вычислений получаем значения коэффициентов:

b=-0.34 ,a=77.14

Получено уравнение парной регрессии для описания расходов на покупки товаров от средней зарплаты одного члена семьи

y^=77.14-0.34*x

Это уравнение показывает , что с увеличением среднедневной заработной платы на 1 руб. для расходов на покупку продовольственных товаров снижается на 34 коп.

Надежность полученных результатов оцениваем по ряду коэффициентов (корреляции, детерминации) и критерию Фишера, определяем среднюю ошибку аппроксимации.


Таблица 2.3

коэффициент корреляции коэффициент корреляции показывает , что связь между х и у умеренная, обратная
rxy=-0,344 rxy=b*(σx/σy)
коэффициент детерминации вариация результата на 11,9% объясняется ариацией фактора х
r²xy=0,119 r²=(-0,344)²=0,119

-1≤xy≤1 0≤r²xy≤1

полученное уравнение регрессии описывает исх. Параметры (х,у) с точностью 11,9%. Влияние прочих факторов оценивается в 88,9%
критерий Фишера Подставляя в уравнение регрессии фактические значения х, определяем расчетные значения у^х
Fфакт. =0,81 Fтабл. =5,99
найдем еличину средней ошибки аппроксимации
Fфакт. =(r²/1-r²)*(n-2) A=1/n(Ai)=1/n (|y-y^x|/y*100%)=(61,19/8)*100%=7,65%
в среднем расчетные значения отклоняются от фактических на 7,65%

Коэффициент Фишера показывает, что это уравнение не имеет экономического смысла, так как Fфакт.< Fтабл.

Полученное значение Fфакт. Указывает на необходимость принять нулевую гипотезу о случайной природу выявленной зависимости и статистической незначимости параметров уравнения и показателей тесноты связи.

Графическое представление полученных результатов показано на рис. 2.1.

Рис.2.1

Из рисунка 2.1. видно, что исходные статистические данные достаточно разборосаны, т.е. явной закономерности не прослеживается.

Результаты вычислений по исходным данным, представлены в таблице 2.1 , полностью совпадают с уже полученным уравнением регрессии.

Таблица 2.4

-0,34337 77,13555
0,382134 21,09393
0,118608 5,924707
0,807417 6
8,34207 210,6129

Выводы:

1. Решена задача парной регрессии методом наименьших квадратов.

2. Низкая достоверность результатов объясняется рядом причин:

- собрано малое количество статистических данных, выбраны случайные районы за небольшой отрезок времени;

- в учебных целях добавлены случайные точки, зависящие от порядкового номера студента и числа студентов в группе;

К-во Просмотров: 212
Бесплатно скачать Контрольная работа: Эконометрическое моделирование временных рядов