Контрольная работа: Эконометрия
Рисунок 1 – Эмпирическая, теоретическая и сглаженная по методу средних (период 3) линии регрессий
Задание 4:
Вычислить корреляционный момент и коэффициент корреляции и оценить тесноту связи элементов ряда.
Решение:
Регрессионный анализ не дает ответа на вопрос: тесная связь или нет, решающее или второстепенное воздействие оказывает данный фактор на величину результативного показателя. Для измерения тесноты связи между факторным и результативным показателями исчисляется коэффициент корреляции по приводимой ниже формуле:
В числителе данной формуле находится корреляционный момент (ковариация или смешанная дисперсия). Для линейной зависимости критерием тесноты связи является коэффициент корреляции, для криволинейной зависимости целесообразно использовать корреляционный момент.
, где ,
Среднее значение показателя Y определяем, как . По условию задачи получаем, что = 6201,267 тыс. грн. = 2040023/15 = 136001,5. = 1553647/15 = 103576,5, тогда как = 0,4882
Коэффициент корреляции может принимать значения от -1 до 1. Чем ближе его величина к 1, тем более тесная связь между изучаемыми явлениями, и наоборот. Считается, что если коэффициент корреляции находится в диапазоне от 0 до 0,3 - то связь слабая, от 0,3 до 0,6 - связь средняя, от 0,6 до 1 - связь сильная. По результатам подсчетов получаем, что между признаком и фактором связь средняя по силе, близка к слабой.
Коэффициент детерминации, полученный по данным формулам, составляет 0,2384. Он показывает, что показатель Y на 23,84% зависит от периода времени, а на долю других факторов приходиться 76,16% изменения уровня Y.
Задание 5:
Оценить качество аппроксимации ряда динамики по имеющимся данным.
Решение:
Чтобы убедиться в надежности показателей связи и правомерности их использования для практической цели, необходимо дать им статистическую оценку. Для этого используются, критерий Стьюдента (t), критерий Фишера (F- отношение), средняя ошибка аппроксимации (ε).
Надежность коэффициента корреляции, которая зависит от объема исследуемой выборки данных, проверяется по критерию Стьюдента:
,
где - среднеквадратическая ошибка коэффициента корреляции, которая определяется по формуле:
,
= 0,76166076/3,741657=0,2035,
Если расчетное значение t выше табличного, то можно сделать заключение о то, что величина коэффициента корреляции является значимой. Табличные значения t находят по таблице значений критериев Стьюдента. При этом учитывается количество степеней свободы (V = 14) и уровень доверительной вероятности (принимаем 0,05). Табличное значение - 2,145 при числе степеней свободы 14 и уровне значимости 0,05. Получаем, что tтабл. < tрасч., величина коэффициента корреляции является значимой.
Надежность уравнения связи (регрессионной зависимости) оценивается с помощью критерия Фишера (F-критерия), расчетная величина которого сравнивается с табличным значением. Если Fрасч .> Fтабл ., то гипотеза об отсутствии связи между исследуемыми показателями отвергается.
Критерий Фишера рассчитывается по формуле:
,
Таким образом, полученное значение 4,0696 больше табличного 3,57. Значимость гипотезы Н0 об отсутствии связи между исследуемыми показателями отвергается и уравнение регрессии считается значимым.
Для оценки точности уравнения регрессии рассчитывается средняя ошибка аппроксимации. Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической, тем меньше ее величина. А это свидетельствует о правильности подбора формы уравнения связи.
Список литературы:
1. Елейко В. Основы эконометрии: в 2х частях. – Львов: ООО «МАРКА Лтд», 1995. – 192с.
2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. – М.: МГУ им. М.В. Ломоносова, Из-во «ДИС», 1997.- 368с.