Контрольная работа: Экономическая интерпретация коэффициента регрессии
12,24152 ± 2,3060*1,073194241
9,766735 ≤ a ≤14,716305
Проверим значимость линейного коэффициента корреляции на основе ошибки коэффициента корреляции:
mr = ((1 – r2 ) / (n – 2))1/2 = 0,046448763
Фактическое значение t – критерия Стьюдента определяется:
tr = (r / (1 – r2 )) * (n – 2)1/2 = 21,3424949
Значение tr фактическое больше табличного, следовательно при уровне значимости α = 0,05 и степени свободы (n – 2), коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.
Задание 5
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью f – критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
R2 = Rxy2 = 0,98274 – детерминация.
F = (R2 /(1 – R2 ))*((n – m – 1)/m) = 455,5020887
Fтабл. 5,32 < Fкр. 455,5020887– это говорит о том, что уравнение регрессии статистически значимо.
Средняя ошибка аппроксимации А = 3,19%. Это говорит о том, что качество уравнения регрессии хорошее. Расчетные значения отклоняются от фактических на 3,19%.
Задание 6
Осуществить прогнозирование среднего значения показателя Y при уровне значимости α = 0,1, если прогнозное значение фактора X составит 80% от максимального значения.
Если прогнозируемое значение Хр = 0,8Хmax = 0,8*39 = 31,2 млн.руб., тогда прогнозное значение объема капиталовложений составит:
Yр = 12,24152 + 0,908871*31,2 = 40,598295 млн.руб.
Ошибка прогноза составит:
my р = Dост.*(1+(1/n)+((xk – xср )2 / ∑(x – xср )2 )1/2 = 1,502474351*(1+(1/10)+ ((31,2 – 23,5)2 / 828,50))1/2 = 1,6262596 млн.руб.
Предельная ошибка прогноза, которая в 90% случаев не будет превышена, составит:
Δyp = tтабл * my р = 2,3060 * 1,6262596 = 3,7501546
Доверительный интервал прогноза:
γур = Yр ± Δyp
γур min = 40,598295 – 3,7501546 = 36,848141 млн.руб.
γур max = 40,598295 + 3,7501546 = 44,348449 млн.руб.
Среднее значение показателя составит:
Yp = (36,848141 + 44,348449) / 2 = 40,598295 млн.руб.
Задание 7
Представить графически фактические и модельные значения Y точки прогноза