Контрольная работа: Экономическая интерпретация коэффициента регрессии
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (X, млн.руб.).
Xi | Yi |
33 | 43 |
17 | 27 |
23 | 32 |
17 | 29 |
36 | 45 |
25 | 35 |
39 | 47 |
20 | 32 |
13 | 22 |
12 | 24 |
Исходные данные.Табл.1
n | Xi | Yi | Yi*Xi | Xi2 | Yi2 | Y(xi) | Yi - Y(xi) | (Yi - Y(xi))2 | A |
1 | 33 | 43 | 1419 | 1089 | 1849 | 42,23428 | 0,765721183 | 0,5863289 | 1,78% |
2 | 17 | 27 | 459 | 289 | 729 | 27,69234 | -0,692335546 | 0,4793285 | 2,56% |
3 | 23 | 32 | 736 | 529 | 1024 | 33,14556 | -1,145564273 | 1,3123175 | 3,58% |
4 | 17 | 29 | 493 | 289 | 841 | 27,69234 | 1,307664454 | 1,7099863 | 4,51% |
5 | 36 | 45 | 1620 | 1296 | 2025 | 44,96089 | 0,03910682 | 0,0015293 | 0,09% |
6 | 25 | 35 | 875 | 625 | 1225 | 34,96331 | 0,036692818 | 0,0013464 | 0,10% |
7 | 39 | 47 | 1833 | 1521 | 2209 | 47,68751 | -0,687507544 | 0,4726666 | 1,46% |
8 | 20 | 32 | 640 | 400 | 1024 | 30,41895 | 1,581050091 | 2,4997194 | 4,94% |
9 | 13 | 22 | 286 | 169 | 484 | 24,05685 | -2,056849728 | 4,2306308 | 9,35% |
10 | 12 | 24 | 288 | 144 | 576 | 23,14798 | 0,852021726 | 0,725941 | 3,55% |
сумма | 235 | 336 | 8649 | 6351 | 11986 | 336 | 0,00 | 12,019795 | 31,93% |
средняя | 23,5 | 33,6 | 864,9 | 635,1 | 1198,6 | 33,6 | 0,00 | 1,2019795 | 3,19% |
δ | 9,102198 | 8,345058 | - | - | - | - | - | - | - |
δ2 | 82,85 | 69,64 | - | - | - | - | - | - | - |
Вспомогательная таблица для расчетов параметров линейной регрессии. Табл.2
Задание 1
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
После проведенных расчетов линейная модель имеет вид:
Y = 12,24152 + 0,908871x , коэффициент регрессии составил 0,908871. Экономический смысл параметра регрессии заключается в следующем: с увеличением капиталовложений на 1 единицу выпуск продукции увеличивается на 0,908871 единиц.
Задание 2
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков; построить график остатков.
Вычисленные остатки приведены в таблице 2. Остаточная сумма квадратов составила 12,02. Дисперсия остатков составила:
Dост = ((Y- Yср.)2 - (Y(xi) - Yср.)2 )/ (n – 2) = 1,502474351.
График остатков. Рис.1
Задание 3
Проверить выполнение предпосылок МНК.
Остатки гомоскедастичны, автокорреляция отсутствует (корреляция остатков и фактора Х равна нулю, рис.1), математическое ожидание остатков равно нулю, остатки нормально распределены.
Корреляция остатков и переменной Х. Рис 2.
Задание 4
Осуществить проверку значимости параметров уравнения регрессии с помощью t – критерия Стьюдента (α = 0,05).
Найдем стандартную ошибку коэффициента регрессии:
mb = (Dост. / ∑(x – xср.) 2 ) ½ = 0,042585061
Теперь проведем оценку значимости коэффициента регрессии:
tb = b / mb= 21,3424949
При α = 0,05 и числе степеней свободы (n – 2) tтабл. = 2,3060. Так как фактическое значение t – критерия больше табличного, то гипотезу о несущественности коэффициента можно отклонить. Доверительный интервал для коэффицента регрессии определяется как b ± t* mb. Для коэффициента регрессии b границы составят: 0,908871 – 2,3060*0,042585061 ≤ b ≤ 0,908871+2,3060*0,042585061
0,81067 ≤ b ≤ 1,0070722
Далее определим стандартную ошибку параметра a:
ma = (Dост.*( ∑x2 / (n*∑(x – xср.)2 ))1/2 = 1,073194241
ta = a / ma = 11,4066218
--> ЧИТАТЬ ПОЛНОСТЬЮ <--