Контрольная работа: Элементы методики полевого опыта
Далее необходимо определить, существенно ли различаются эти выборочные средние при 0,95-95% уровне вероятности или 0,05-5% уровне значимости, т.е. проверить нулевую гипотезу Н0 : µ1 - µ2 = d = 0.
Х1 ср ±t01 SХср1 =233 ±5,84*21.76 = 233±127.08 (105.92 - 360.08)
Х2 ср ±t01 SХср =226,25 ±5,84*23,09 = 226,25±97,70 (128,55 - 323,95)
Доверительные интервалы для генеральных средних перекрывают друг друга, и, следовательно, разность между выборочными средними d = Х1 ср - Х2 ср = 233-226,25 = 6.75 нельзя переносить на генеральные средние µ1 и µ2 , так как генеральная разность между ними D = µ1 - µ2 может быть равна и нулю и даже отрицательной величине, когда µ2 >µ1 . Поэтому гипотеза Н0 : d = 0 не отвергается.
Нулевую гипотезу об отсутствии существенных различий между выборочными средними можно проверить и другим способом интервальной оценки генеральных параметров совокупности.
Sd = √ (S Хср 1 2 + S Хср 2 2 )
По формуле можно определить ошибку разности средних, а затем рассчитать доверительные интервалы для генеральной разности средних D. Если доверительные интервалы перекрывают нулевое значение и включают область отрицательных величин, то Н0 : d = 0 не отвергается, а если лежат в области положительных величин, то Н0 отвергается и разность признается существенной.
Имеем:
d = Х1 ср - Х2 ср = 233-226,25 = 6.75
Sd = √ (S Хср 1 2 + S Хср 2 2 ) = √ (21.762 + 23,092 ) = 31.73
При n1 + n2 - 2 = 4+4-2 = 6 степенях свободы t05 = 2.45 и t01 = 3,71
Найдем доверительные интервалы для генеральной разности:
95% - d± t05 sd = 6.75±2.45*31.73 = 6.75±77.74 (-70.99 - 84.49)
99% - d± t05 sd = 6.75±3,71*31.73 = 6.75±117.72 (-110.97 - 124.47)
Нулевая гипотеза Н0 : d = 0 не отвергается, так как доверительные интервалы включают нуль и область отрицательных величин, т.е. разность меньше предельной случайной ошибки разности (d<tsd ).
Далее оценим существенность разности выборочных средних по t‑критерию. Фактическое значение критерия существенности находим по соотношению:
t = (х1ср - х2ср ) / √ (SХср1 2 + SХср2 2 ) = (233-226,25) /31.73 = 0.21
Сопоставляя фактическое значение t с теоретическим, приходим к выводу, что tфакт < t05 и 2.45 и tфакт < t01 .
Следовательно, разность несущественна.
Оценим существенность разности по критерию F.
F = s1 2/ s2 2
s1 2 = 21.762 = 473.49
s2 2 =23,092 = 533.15
F05 = 6.39
F01 = 15.98
F = s1 2/ s2 2 = 473.49/533,15 = 0, 88
Получаем:
Fф < F05 и Fф < F01
Следовательно, нулевая гипотеза не отвергается, между всеми выборочными средними нет существенных различий.