Контрольная работа: Функции и их производные

подставляем найденные выражения в уравнение, получаем: , что и требовалось доказать.

№5

Найти если

Вычислить если .

Воспользуемся формулами нахождения производных для функций, заданных параметрически


№ 6.

Функции задана неявно уравнением

Вычислить:

а)

Вычисления проводим по формуле


б)

№ 7.

На графике функции y=ln2x взята точка А. Касательная к графику в точке А наклонена к оси ОХ под углом, тангенс которого равен ј. Найти абсциссу точки А.

Из геометрического смысла производной имеем


№ 8.

Найти dy, если у=х6 . Вычислить значение dy, если

Для имеем

№ 9.

Дана функция и точки и

Вычислить Дz и dz при переходе из точки М0 в точку М1 . Приращение функции Дz равно

Дифференциал функции dz равен


К-во Просмотров: 276
Бесплатно скачать Контрольная работа: Функции и их производные