Контрольная работа: Функции и их производные
На границах отрезка
Сравниваем все найденные значения функции
видим, что наибольшее значение достигается в точке (2;-1) и равно 23, а наименьшее равно 4 и достигается в точке (0;0).
Ответ: 23;4.
№ 12.
Провести полное исследование функции и начертить ее график.
1. Найдем область определения функции .
Функция непериодична.
2. Установим наличие симметрии относительно оси OY или начала координат по четности или нечетности функции , симметрии нет.
3. Определим «поведение функции в бесконечности»
4. Точка разрыва х=-2
5. найдем пересечение кривой с осями координат
т.А (0;2)
Корней нет, нет пересечения с осью OY.
6. Найдем точки максимума и минимума
в точке производная меняет знак с <-> на <+>, следовательно имеем минимум, в точке производная меняет знак с <+> на <->, имеем максимум.
При первая производная отрицательна, следовательно, функция убывает, при производная положительна, функция в этих промежутках возрастает.
7. Найдем точки перегиба
, точек перегиба нет. При вогнутость вверх, при , вогнутость вниз.
8. Найдем горизонтальные и наклонные асимптоты в виде , где