Контрольная работа: Генерирование коррелированных случайных процессов в среде LabVIEW

Изображенный фильтр описывается системной (передаточной) функцией

K(z-1 ) = b0 + b1 z-1 + b2 z-2 + … + bk z-k .

Передаточная функция в стандартной форме, полученная из системной функции умножением числителя и знаменателя на zk , имеет вид:

K(z) = (b0 zk + b1 zk - ! + … + bk )/zk .

Недостаток СС-фильтра: увеличение порядка фильтра с увеличением количества отсчетов корреляционной функции. Если корреляционная функция имеет бесконечную протяженность, то для сокращения порядка фильтра ее искусственно ограничивают по времени, пренебрегая малыми значениями корреляционной функции. Это приводит к возникновению методической ошибки моделирования.

Авторегрессионный метод Существенная экономия машинных ресурсов и возможность моделирования случайных процессов с корреляционной функцией бесконечной протяженности достигается при использовании авторегрессионного метода. Авторегрессионный метод предполагает использование рекурсивных фильтров с системной функцией

где m – порядок фильтра.

Как следует из вида системной функции, выходной процесс авторегрессионного фильтра (АР-фильтра) связан с входным процессом рекуррентным соотношением


y(nT) =b0 x(nT) + a1 y(nT – T) + a2 y(nT – 2T) + … + am y(nT – mT).

Корреляционная функция определяется коэффициентами ai . Непосредственно по этому выражению нельзя найти корреляционную функцию, зная коэффициенты ai , как это было сделано по выражению (2). Для выявления качественного влияния коэффициентов на форму корреляционной функции воспользуемся ее связью с импульсной характеристикой фильтра. Рассмотрим сначала АР-фильтр первого порядка (рис. 7).

Рис. 7

Его передаточная функция в стандартной форме

K(z) =.

Импульсная характеристика определяется как обратное Z – преобразование от передаточной функции:

g[n] = b0 a1 n ( 4)

Диапазон возможных значений коэффициента a1 ограничивается устойчивостью фильтра. Для устойчивости АР-фильтра требуется, чтобы полюса его передаточной функции находились внутри окружности единичного радиуса.

Полюс находится приравниванием нулю знаменателя передаточной функции:

z – a1 =0.

Полюс

z1 = a1 ,

и требование устойчивости фильтра

| a1 | < 1 или -1 < a1 < 1.

При положительном a1 импульсная характеристика, как следует из ( 4), является монотонно спадающей функцией, и корреляционная функция тоже будет монотонно спадающей. При отрицательном а1 импульсная характеристика становится колебательной, и корреляционная функция будет колебательной затухающей с периодом колебаний равным двум интервалам дискретизации.

Рассмотрим, как будет изменяться АЧХ фильтра, а следовательно, и энергетический спектр ( 1) генерируемой последовательности, при изменении а1 . Комплексная частотная характеристика получается из передаточной функции К(z) подстановкой z = ejωΔt . Амплитудно-частотная характеристика

К(ω) = |b0 ejωΔt /(ejωΔt – a1 )| = b0 /|ejωΔt – a1 |.

Она обратно пропорциональна модулю разности векторов ejωΔt и a1 . Как видно из рис. 8 а), при положительном a1 модуль разности векторов будет изменяться от наименьшего значения при ω = 0 до наибольшего значения при ωΔt = π. Значит, АЧХ, а следовательно, и энергетический спектр случайной последовательности, будет иметь подъем в области низких частот. При отрицательных a1 , наоборот, подъем будет в области верхних частот.

а) б) в)
Рис. 8

На рис. 8, б) показан энергетический спектр процесса на выходе фильтра при a1 = 0,8; а на рис. 8, в) – при a1 = - 0,8.

К-во Просмотров: 272
Бесплатно скачать Контрольная работа: Генерирование коррелированных случайных процессов в среде LabVIEW