Контрольная работа: Графическое решение уравнений
Введение
Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.
Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.
Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.
В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.
В древнем Вавилоне могли решить некоторые виды квадратных уравнений.
Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.
В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2 , у = – x 2 , в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3 , у = x 4 , у = x 2 n , у = x - 2 n , у = 3 √x , ( x – a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.
Моя работа заключается в исследовании графиков функций и графическом решении уравнений.
1. Какие бывают функции
График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.
Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.
Функция обратной пропорциональности у = k / x , где k¹ 0. График этой функции называется гиперболой.
Функция ( x – a )2 + (у – b )2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).
Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.
Уравнение у 2 ( a – x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.
Уравнение ( x 2 + y 2 )2 = a ( x 2 – y 2 ) . График этого уравнения называется лемнискатой Бернулли.
Уравнение . График этого уравнения называется астроидой.
Кривая(x2 y2 – 2 a x)2 =4 a2 (x2 + y2 ) . Эта кривая называется кардиоидой.
Функции: у = x 3 – кубическая парабола, у = x 4 , у = 1/ x 2 .
2. Понятие уравнения, его графического решения
Уравнение – выражение, содержащее переменную.
Решить уравнение – это значит найти все его корни, или доказать, что их нет.
Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.
Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.
При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.
Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.
3. Алгоритм построения графика функции
Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l . Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на │ m │ единиц масштаба вправо или влево вдоль оси x и на │ l │ единиц масштаба вверх или вниз вдоль оси y .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--