Контрольная работа: Графическое решение уравнений
На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.
Что знали о параболе древние греки?
Современная математическая символика возникла в 16 веке.
У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.
Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).
Существует алгоритм построения параболы:
• Находим координаты вершины параболы А (х0 ; у0 ): х0 =- b /2 a ;
• y0 =ахо 2 +вх0 +с;
• Находим ось симметрии параболы (прямая х=х0 );
• Составляем таблицу значений для построения контрольных точек;
• Строим полученные точки и построим точки им симметричные относительно оси симметрии.
1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.
Существует пять способов графического решения этого уравнения.
2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3 . Корни уравнения – абсциссы точек пересечения параболы с прямой.
3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.
4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x –1)2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.
5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.
5. Графическое решение уравнений степени n
Пример 1. Решить уравнение x 5 = 3 – 2 x .
Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = x 5 , y = 3 – 2 x .
Ответ: x = 1.
Пример 2. Решить уравнение 3 √ x = 10 – x .
Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 √ x , y = 10 – x .
Ответ: x = 8.
Заключение
Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3 , у = x 4 , у = 3 √x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .
На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.
Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.
В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.