Контрольная работа: Использование Excel для решения статистических задач
Составим систему ограничений, исходя из условия задачи:
- ограничение на покупку овощей по деньгам:
На покупку овоща А расходуется 1,6 д.е на 1 тонн. На все количество овоща А расходуется 1,6 А д.е. На овощ В расходуется 1,7 д.е. на 1 тонну на закупку овоща В тратят 1,7 В. Значит, исходя из условия задачи, суммарная сумма на которую закупаются овоща не должна превышать 180 д.е. Получим первое неравенство системы:
1,6 А + 1,7 В ≤ 180;
– дополнительные условия:
В условии задачи содержится дополнительное условие – закупка овоща А не менее 10 тонн и не более 60 тонн. т.е. имеем дополнительные неравенства для овоща А:
А ≥ 10;
А ≤ 60;
Для овоща В наложено верхнее ограничение не более 70 тонн, из условия задачи понятно что нижним ограничение является 0. Получаем дополнительные неравенства для овоща В:
В ≥ 0;
В ≤ 70;
Получили математическую модель задачи:
1,6А + 1,7В ≤ 180;
А ≥ 10; А ≤ 60;
В ≥ 0; В ≤ 70;
2. решение формализованной задачи;
Решив задачу графически и с использованием пакета Excel, получим одинаковое решение:
А = 60 тонн.
В = 49,412 тонн.
Ход решения – см. таблица 9 и рисунок 3
Вывод: Для получения максимальной прибыли в размере 72,7 ден. ед. необходимо следующим образом потратить существующие деньги:
- овощ А закупить в количестве 60 тонн.
- овощ В закупить в количестве 49,412 м.
При этом необходимо потратит все деньги: 180 д.е.
Графическое решение задачи 4
Необходимо найти значения (А, В), при которых функция Z =0,8 А – 0,5 В достигает максимума. При этом А и В должны удовлетворять системе ограничений, приведенной ранее:
1,6А + 1,7В ≤ 180;
А ≥ 10; А ≤ 60;
В ≥ 0; В ≤ 70;
Решение
1. Строим область, являющуюся пересечением всех полуплоскостей, уравнения которых приведены в системе ограничений. Например, полуплоскость 1,6А + 1,7В ≤ 180; представляет собой совокупность точек, лежащих ниже прямой, соединяющей точки с координатами (65; 44,705) и (32,813; 75). Аналогично – остальные. Построение – рисунок 3.
2. Находим градиент функции Z.
gradz = {0,8; 0,5}