Контрольная работа: Исследование операций 4
Таким образом, t1 = t3 =0; t2=100; L=10000.
Т.е. для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.
ОТВЕТ: для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.
Задача 2
№34
Условие:
С помощью симплекс–таблиц найти решение задачи линейного программирования: определить экстремальное значение целевой функции Q=CTx при условии Ax ³£B,
где CT = [c1 c2 . . . c6 ]T , ВT = [ b1 b2 . . . b6 ]T ,
XT = [x1 x2 . . . x6]T , А= [aij] (i=1,6; j=1,3).
№ вар. | с1 | с2 | с3 | с4 | с5 | с6 | b1 | b2 | b3 | Знаки ограничений | a11 | a12 | a13 | a14 | ||||||||||||||||||
1 | 2 | 3 | ||||||||||||||||||||||||||||||
34 | 3 | 3 | 1 | 1 | 0 | 0 | 4 | 4 | 15 | = | = | = | 2 | 0 | 3 | 1 | ||||||||||||||||
№ вар. | a15 | a16 | a21 | a22 | a23 | a24 | a25 | a26 | a31 | a32 | a33 | a34 | a35 | a36 | Тип экстрем. | |||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||||||||||||||||||
1. 34 | 0 | 0 | 1 | 0 | –1 | 2 | 3 | 0 | 3 | 3 | 6 | 3 | 6 | 0 | max |
Решение:
Исходная система:
Целевая функция Q= x1+3x2+x3+3x5.
Пусть х3, х4 – свободные переменные, х1, х2, х5 – базисные.
Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:
Q=9 - (9/2x3-1/2x4)
Составим симплекс-таблицу:
b | x3 | x4 | |||
Q | 9 | 9/2 | -1/2 | ||
2/3 | -5/6 | 1 | |||
x1 | 2 | 3/2 | 1/2 | 2/0,5=4 | |
-2/3 | 5/6 | -1 | |||
x2 | 7/3 | 4/3 | 0 | ||
0 | 0 | 0 | |||
x5 | 2/3 | -5/6 | 1/2 | 2/3 : 1/2=4/3 | |
4/3 | -5/3 | 2 |
Это опорное решение, т.к. свободные члены положительны.
Т.к. коэффициент при х4 отрицательный, то это и будет разрешающий столбец. В качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это х5).
b | x3 | x5 | |||
Q | 29/3 | 11/3 | 1 | ||
x1 | 4/3 | 2/3 | -1 | ||
x2 | 7/3 | 4/3 | 0 | ||
x4 | 4/3 | -5/3 | 2 |
Т.к. коэффициенты при переменных в целевой функции положительны, следовательно, это оптимальное решение.
Т. о. Q=29/3
x3=x5=0; x1=4/3; x2=7/3; x4=4/3.
ОТВЕТ: Q=29/3ж
x3=x5=0; x1=4/3; x2=7/3; x4=4/3.
Задача 3
№14
Условие:
Решение транспортной задачи:
1. Записать условия задачи в матричной форме.
2. Определить опорный план задачи.