Контрольная работа: Исследование операций 4

3. Получить систему неравенств в соответствии с теоремой Куна-Таккера.

4. Используя метод искусственных переменных составить симплекс-таблицу и найти решение полученной задачи линейного программирования.

5. Дать ответ с учетом условий дополняющей нежесткости.

b1 b2 c11 c12 c22 extr a11 a12 a21 a22 p1 p2

Знаки огр.

1 2

59 4.5 1.5 –5 –2 –1 max 2 –3 5 4 9 13 ³ ³

Решение:

Целевая функция: F=-5x12-x22-2x1x2+4.5x1+1.5x2

Ограничения g1(x) и g2(x):

1) определим относительный максимум функции, для этого определим стационарную точку (х10, х20):

2) Исследуем стационарную точку на максимум, для чего определяем выпуклость или вогнутость функции

F11 (х10, х20) = -10 < 0

F12 (х10, х20) = -2

F21 (х10, х20) = -2

F22 (х10, х20) = -2

Т.к. условие выполняется, то целевая функция является строго вогнутой в окрестности стационарной точки

3) Составляем функцию Лагранжа:

L(x,u)=F(x)+u1g1(x)+u2g2(x)=

=-5x12-x22-2x1x2+4.5x1+1.5x2+u1(2x1-3x2-9)+u2(5x1+4x2-13)

Получим уравнения седловой точки, применяя теорему Куна-Таккера:

i=1;2

Объединим неравенства в систему А, а равенства в систему В:

Система А:

Система В:

Перепишем систему А:

К-во Просмотров: 305
Бесплатно скачать Контрольная работа: Исследование операций 4