Контрольная работа: Исследования химии в 20-21 веках

Для количественного анализа исследуемые сложные, смеси и соединения делятся на компоненты. Для этого применяется универсальный метод - хроматография. Этот метод впервые предложил российский ученый М.С. Цвет (1872-1919). Его сущность заключается в том, что различные вещества в жидкой или газообразной фазе обладают разной прочностью связи с поверхностью, с которой они находятся в контакте. С помощью хроматографии можно разделить и зафиксировать чрезвычайно малое количество вещества в смеси - около 10-12 г. Кроме того, хроматография позволяет разделить многокомпонентные газообразные смеси, содержащие вещества разного изотопного состава.

Для анализа и идентификации структуры сложных молекул, объединяющих большое количество атомов с различными взаимными связями, широко применяются основанные на физических принципах экспериментальные методы ядерного магнитного резонанса, оптической спектроскопии, масс-спектроскопии, рентгеноструктурного анализа, нейтронографии и т.п.

В управлении химическими процессами важную роль играют предварительные расчеты, позволяющие определить свойства синтезируемых молекул. Еще в первой половине XXвека с развитием квантовой теории появилась возможность рассчитывать взаимодействие электронов и атомных ядер при химических реакциях. Однако на практике такие расчеты долго оставались недостижимыми: уж слишком сложны уравнения квантовой механики для комплексных объектов - молекул и даже атомов с множеством движущихся электронов. Решение подобной задачи стало возможным при учете электронной плотности, а не движения отдельных электронов в молекуле или атоме. Такой подход позволяет рассчитывать свойство и структуру даже весьма сложных молекул, например белковых. За решение данной задачи квантовой химии австрийский физик Вальтер Кон и английский математик и физик Джон Попл (оба ученых работают в США) удостоены в 1998г. Нобелевской премии по химии.

2. ОБРАЗОВАНИЕ ЗЕМНЫХ И ВНЕЗЕМНЫХ ВЕЩЕСТВ

Геохимические процессы в недрах Земли и на ее поверхности, представляют собой превращения сложных соединений и смесей, состоящих из кристаллических и аморфных фаз. Многие из них протекают при очень высоких давлениях и температурах. Современные технические средства эксперимента позволяют воспроизвести в лаборатории условия, близкие к условиям внутри Земли и даже земного ядра. Природные процессы: кристаллизация, частичное растворение, изменение структуры минералов (метаморфизм), выветривание и т.п. - приводят к образованию рудных отложений или к их разрушению и рассеянию.

Большой интерес представляют метеориты: они дают необходимую информацию об эволюции небесных тел, находящихся на разных стадиях развития. При этом важную роль играет анализ изотопного состава многих металлов и газообразных веществ, найденных в метеоритах.

Химия внесла и вносит существенный вклад в исследование космического пространства. Без ракетного топлива и современных материалов, способных выдержать огромное давление, высокую температуру и интенсивное космическое излучение, без электрохимических источников энергии, без разнообразных химических средств для обеспечения питания космонавтов мы сегодня смотрели бы на Луну из нашего прекрасного далека. Космос с давних пор стал объектом химических исследований. На стыке химии и астрофизики зародилась новая отрасль естествознания - космохимия, изучающая состав космических тел, законы распространенности элементов во Вселенной и т.д.

Первые данные о химическом составе небесных тел получены с помощью спектрального анализа. В химических лабораториях, кроме того, исследовался состав метеоритного вещества. Состав метеоритов оказался единообразным, как если бы они происходили из одного и того же рудника. До сих пор ни в одном метеорите не найден химический элемент, который не встречался бы на Земле. С помощью самых точных методов анализа в метеоритах обнаружены почти все известные на нашей планете химические элементы. Характерная особенность большинства метеоритов заключается в том, что они содержат много чистого железа и очень мало наиболее распространенного на Земле кварца. Вещества, которые указывали бы на существование жизни в космосе, пока не найдены, хотя углерод обнаружен в виде крошечных алмазов, графита и аморфного угля. Относительно недавно появилось сообщение об обнаружении бактериоподобной структуры в метеорите с Марса, что является предметом дальнейшей дискуссии о существовании жизни на этой планете в далеком прошлом.[2]

Наиболее часто встречающиеся каменные метеориты, как и большинство земных пород, состоят в основном из силиката магния. Железные метеориты содержат до 90% железа. Содержание никеля в них составляет 6-20%. Кроме того, метеориты содержат кобальт, медь, хром, фосфор, серу, платину, палладий, серебро, иридий, золото и другие элементы. Встречаются включения газов: водорода, оксида и диоксида углерода.

Прямая геологическая разведка небесных тел началась 21 июля 1969 г., когда человек впервые ступил на поверхность Луны и взял пробы лунного грунта. Через год с небольшим прилунилась первая автоматическая станция «Луна-16», возвратившаяся на Землю с образцами лунной породы. Немного позднее, в ноябре 1970 г., на Луну доставлена советская автоматическая станция «Луноход-1», которая, начав свое движение по Луне с северо-западного Моря дождей, обследовала за 321 сутки около 50 га лунной поверхности. Обследования проводились и днем, и ночью при температурах от -140 до 130 °С. Результаты анализа показали, что за исключением несколько повышенного содержания тугоплавких соединений титана, циркония, хрома и железа, лунные породы по своему составу очень похожи на земные. Некоторые различия выявились в свойствах. Так, лунное железо ржавеет медленнее, чем земное. В верхнем слое лунного грунта обнаружен удивительный минерал, получивший название реголит. Он имеет сравнительно низкую теплопроводность.

Продолжается исследование планет Солнечной системы. С помощью космического зонда, отправленного к Венере, в результате гамма - спектрального анализа установлено, что грунт Венеры по химическому составу соответствует граниту.

Вещество, находящееся в межзвездном пространстве, состоит из газа и пыли. Наиболее распространенными газами в космическом пространстве являются водород (70 масс. %) и гелий (28 масс. %). В газовых межзвездных облаках обнаружено более 20 химических компонентов. Наряду с простыми химическими соединениями (СО, Н2 , HCN, H20,1ЧНз) в 200 космических газовых скоплениях найдены и более сложные соединения - метанол, изоциановая кислота, формамид, формальдегид, метилацетилен и ацетальдегид. Относительно недавно обнаружены молекулы этилового спирта, муравьиной кислоты и других соединений.

Исследования космохимии носят преимущественно познавательный характер, но нельзя исключать, что в будущем они обретут практическую значимость. Были получены некоторые важные для практики результаты. Для химико-фармацевтической промышленности представляет практический интерес более интенсивное развитие бактериальных культур в невесомости, чем на Земле. Металлурги могут получить в невесомости сплавы с уникальными свойствами. Весьма перспективно выращивание в космосе бездефектных монокристаллов, особенно оксидов металлов.

3. новые ХИМИЧЕСКИе ЭЛЕМЕНТы

3.1 Получение новых химических элементов

Вещественная среда обитания людей содержит многочисленные соединения и их составляющие - химические элементы. Еще до 30-х годов XX века Периодическая система Менделеева состояла из 88 элементов. С учетом свободных клеток с номерами 43 (технеций), 61 (прометий), 85 (астат) и 87 (франций) в ней было всего 92 места. Последним элементом с атомным номером 92 был уран.

Предполагается, что на первой стадии развития Земли существовали и трансурановые элементы с порядковыми номерами до 106. Однако из-за небольшой продолжительности жизни по сравнению с возрастом Земли они полностью распались. Самым долгоживущим элементом из них оказался плутоний-244 с периодом полураспада 82,2 млн. лет, и его существование в настоящее время доказано: он обнаружен в 1971г. в калифорнийском минерале бастнезите.

В 1940г. получен первый трансурановый элемент - нептуний, а за три года до этого получен первый искусственный элемент - технеций. Затем в лабораторных условиях зарегистрированы трансурановые элементы с атомными номерами до 109. В Объединенном институте ядерных исследований в Дубне открыты элементы с номерами 104(1964), 105(1970), 106(1974) и 107(1976).

Международный союз чистой и прикладной химии в сентябре 1997г. узаконил названия искусственных сверхтяжелых элементов: резерфордий (104), дубний (105), сиборгий (106), борий (107), хассий (108) и мейтнерий (109). Эти названия даны главным образом в честь ученых, внесших значительный вклад в ядерную физику. Один из них - дубний - назван в честь города Дубна, где были открыты многие новые химические элементы. В феврале 1999г. появилось сообщение: ученые из Объединенного института ядерных исследований в Дубне открыли выходящий за пределы Периодической системы Менделеева новый химический элемент с периодом полураспада намного большим, чем у открытых в последнее время сверхтяжелых элементов.

Трансурановые элементы с атомными номерами до 100 можно получить в ядерном реакторе путем «надстройки» ядер изотопа урана-238 при сталкивании их с нейтронами. Все элементы с номерами выше 100 и массовыми числами более 257 получают только в ускорителях и в незначительных количествах. Для получения сверхтяжелых трансуранидов ядра урана бомбардируются ионами ксенона, гадолиния, самария, урана и др., которые обладают достаточно высокой энергией. Особенно эффективна бомбардировка ионами самого урана, в результате которой образуются тяжелые промежуточные ядра.

В стабильных атомных ядрах заряженные и нейтральные частицы находятся в равновесном состоянии. С нарушением равновесия ядерная система становится неустойчивой. Современная теория позволяет рассчитать условия стабильности сверхтяжелых ионов и элементов, а также предсказать наиболее вероятные их физические и химические свойства. Из подобных расчетов следует, что элементы с атомными номерами, близкими к 114 и 164, должны обладать неожиданно высокой стабильностью. Такие элементы образуют своеобразные острова стабильности, где возможно существование изотопов с периодом полураспада до 10 лет.

Предполагается, что свойства элементов с атомными номерами 112-118 аналогичны свойствам элементов в ряду ртуть - радон. Верхняя граница возможной стабильности, насколько ее позволяет определить современный уровень естественно - научных знаний, приближается к атомному номеру 174. Для синтеза подобного рода элементов нужны новые технические средства эксперимента.

3.2 Радиоактивные изотопы и их применение

Изотопы - разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов, и поэтому занимают одно и то же место в Периодической системе элементов Менделеева. Различают устойчивые (стабильные) и радиоактивные изотопы. Термин «изотопы» впервые предложил в 1910г. Фредерик Содди (1877-1956), известный английский радиохимик, лауреат Нобелевской премии 1921г., экспериментально доказавший образование радия из урана.

Радиоактивные изотопы широко применяются не только в атомной энергетике, но и в разнообразных приборах и аппаратуре для определения плотности, однородности вещества, его гигроскопичности и т.п. С помощью радиоактивных индикаторов можно проследить за перемещением химических соединений в физических, технологических, биологических и химических процессах, для чего в исследуемый объект вводят радиоактивные индикаторы (меченые атомы) определенных элементов и затем наблюдают за их движением. Этот способ позволяет исследовать механизмы реакций при превращениях веществ в сложных условиях, например при высокой температуре, в доменной печи или в агрессивной среде химического реактора, а также изучать процессы обмена веществ в живых организмах. Изотоп кислорода-18 помогает выяснить механизм дыхания живых организмов.

Радиоактивный метод анализа вещества дает возможность определить содержание в нем различных металлов от кальция до цинка, в чрезвычайно малых концентрациях - до 1-10 г. (при этом требуется всего лишь 10-12 г. вещества). Радиоактивные препараты широко используются в медицинской практике для лечения многих заболеваний, в том числе и злокачественных опухолей. Изотопы плутония-238, кюрия-224 применяются для производства батарей небольшой мощности для стабилизаторов ритма сердца. Для их непрерывной работы в течение 10 лет достаточно всего 150-200 мг плутония (обычные батареи служат до четырех лет).

В результате радиационно-химических реакций из кислорода образуется озон, из газообразных парафинов - водород и сложные соединения низкомолекулярных олефинов. Облучение полиэтилена, поливинилхлорида и других полимеров приводит к повышению их термостойкости и прочности. Можно привести множество примеров практического применения изотопов и радиоактивного излучения. Несмотря на это, отношение людей к радиации, особенно в последние десятилетия, резко изменилось. За примерно столетнюю историю радиоактивные источники прошли долгий путь от эликсира жизни до символа зла.[3]

После открытия рентгеновских лучей многие верили, что с помощью радиации можно вылечить все болезни и решить все проблемы. В то время люди не хотели видеть опасности радиоактивного облучения. Когда в 1895 г. Вильгельм Рентген (1845-1923) обнаружил новый вид облучения, волна восторга охватила весь цивилизованный мир. Открытие не только поколебало основы классической физики. Оно обещало неограниченные возможности - в медицине его тут же стали применять для диагностики, чуть позже - для лечения самых различных заболеваний. Рентгенодиагностика и рентгенотерапия спасли жизнь многим людям. Врачи, правда, через некоторое время стали ограничивать допустимое число рентгеновских снимков для одного пациента, но никто всерьез не обращал внимания на ожоги, возникающие после рентгена. Французский физик А. Беккерель, например, имел привычку носить в кармане брюк радиевый прибор. Через некоторое время он заметил воспаление на ноге. Чтобы убедиться, что прибор послужил причиной болезни, он переложил его в другой карман. Но даже появившаяся на другой ноге язва не смогла отрезвить ученого, находящегося, как и остальные, в эйфории от нового открытия. Радиоактивное излучение в то время рассматривали как универсальное целительное средство, эликсир жизни. Радий оказался эффективен при лечении доброкачественных опухолей, и «популярность» его резко возросла. В свободной продаже появились радиевые подушки, радиоактивная зубная паста и косметика.

Однако вскоре появились первые тревожные сигналы. В 1911г. было обнаружено, что берлинские врачи, имеющие дело с радиацией, часто заболевают лейкемией. Позднее немецкий физик Макс фон Лауэ (1879-1960) экспериментально доказал, что радиоактивное излучение неблагоприятно влияет на живые организмы, а в 1925-1927 гг. стало известно, что под воздействием излучения возникают изменения наследственного вещества - мутации.

Полное отрезвление наступило после атомной бомбардировки Хиросимы и Нагасаки. Почти все оставшиеся в живых после ядерного взрыва получили большую дозу облучения и умерли от рака, а их дети унаследовали некоторые генетические нарушения, вызванные радиацией. Впервые об этом стали открыто говорить в 1950г., когда число больных лейкемией среди пострадавших от атомных взрывов стало катастрофически расти. После Чернобыльской аварии недоверие к радиации переросло в настоящую ядерную истерию.

Таким образом, если в начале XX в. люди упорно не хотели видеть вреда от облучения, то в конце его - стали бояться радиации даже тогда, когда она не представляет реальной опасности. Причина обоих явлений одна - человеческое невежество. Можно только надеяться, что в будущем человек научится придерживаться золотой середины и обращать знания о природных явлениях себе во благо.

4. ПЕРСПЕКТИВНЫЕ ХИМИЧЕСКИЕ ПРОЦЕССЫ

4.1 Плазмохимические процессы

Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной, плазме при температуре от 1000 до 10000°С. Ионизированные и неионизированные частицы плазмы, находящиеся в возбужденном состоянии, в результате столкновений легко вступают в химическую реакцию. Производительность метанового плазмохимического реактора - плазмотрона сравнительно небольших размеров (длиной 65 см и диаметром 15 см) - составляет 75 т ацетилена в сутки. По производительности он не уступает огромному заводу. В нем при температуре 3000-3500 °С за 0,0001с около 80% метана превращается в ацетилен. Коэффициент полезного потребления энергии - 90-95 %, а энергозатраты - менее 3 кВт/ч на 1 кг ацетилена. В то же время в традиционном паровом реакторе пиролиза метана энергозатраты вдвое больше.

В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах - 1-2 кВт/ч на 1 кг готовой продукции.

К-во Просмотров: 147
Бесплатно скачать Контрольная работа: Исследования химии в 20-21 веках