Контрольная работа: Исследования химии в 20-21 веках

Ионно-плазменное напыление в вакууме широко применяется для формирования элементов современных интегральных схем.

Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, способствующее срастанию эндо - протеза с костной тканью. С помощью пористых покрытий можно увеличить эффективность катализатора, повысить коэффициент теплоотдачи и т.д.

Плазмохимия позволяет синтезировать металлобетон, в котором в качестве связующих материалов используют сталь, чугун и алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие - в 10 раз и на растяжение - в 100 раз. В нашей стране разработан плазмохимический способ превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. Кроме основного химического продукта - синтез газа, извлекаемого из органических соединений каменного или бурого угля, этот способ позволяет получить из неорганических включений угля ценные соединения: технический кремний, карбосилиций, ферросилиций, адсорбенты для очистки воды и т.п., - которые при других способах переработки угля выбрасываются в виде зольных отходов.

4.2 Самораспространяющийся высокотемпературный синтез

Для производства многих тугоплавких и керамических материалов применяется технология порошковой металлургии, включающая операции прессования при высоком давлении и спекания полученной заготовки при относительно высокой температуре 1200-2000 °С. Однако эта технология довольно энергоемкая: создание высоких температур и давления требует больших энергозатрат. Гораздо проще и экономичнее предложенная сравнительно недавно технология самораспространяющегося высокотемпературного синтеза, основанная на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п., т.е. теплового процесса горения в твердых телах.

Самораспространяющийся высокотемпературный синтез не требует трудоемких процессов и громоздких печей и отличается высокой технологичностью. Он легко поддается автоматизации. Промышленной установкой, производящей многотоннажную продукцию, может управлять всего лишь один оператор.

4.3 Химические реакции при высоких давлениях

Химические превращения веществ при давлениях выше 100 атм. относятся к химии высоких давлений, а при давлениях выше 1000 атм. - химии сверхвысоких давлений. Идея активизации химических реакций при повышении давления возникла сравнительно давно: еще в 1917 г. аммиак производился при давлении 300 атм. и температуре 600 °С.

В последнее время во многих промышленных установках давление достигает не менее 5000 атм. Проводятся испытания при давлении выше 600000 атм., которое создается ударной волной при обычном взрыве. Ядерные взрывы сопровождаются более высоким давлением.

Высокое давление ведет к существенному изменению физических и химических свойств вещества. Например, сталь при давлении 12000 атм. становится ковкой и гибкой, а при 20000 атм. металл эластичен, как каучук. При давлении 400000 атм. диэлектрическая сера приобретает электропроводящие свойства. При высоких температурах и давлениях обычная вода химически активна, и растворимость солей в ней повышается в 3-4 раза. При сверхвысоком давлении многие вещества переходят в металлическое состояние. Таким необычным свойством обладает даже газообразный водород - его металлическое состояние наблюдалось в 1973 г. при давлении 2,8 млн. атм. С применением твердого водорода в качестве ракетного топлива полезный груз космического корабля увеличивается с 10 до 60%.

4.4 Синтез алмазов

Одно из важнейших достижений химии сверхвысоких давлений - синтез алмазов. Первые искусственные алмазы синтезированы в 1954 г. (после длительной, пятидесятилетней поисковой работы) почти одновременно в США и Швеции. Синтез осуществлялся при давлении 50 000 атм. и температуре 2000 °С. Такие алмазы стоили в 30 раз дороже природных, но уже к началу 60-х годов XX в. их стоимость существенно снизилась. В последние десятилетия ежегодно производятся тонны синтетических алмазов, по своим свойствам незначительно отличающихся от природных. Различия между синтетическими и природными алмазами можно определить только с помощью точных физических приборов. Доля искусственных алмазов на мировом рынке превышает 75% от объема всей алмазной продукции.

В недалеком прошлом по производству и потреблению алмазов первое место в мире занимал бывший СССР. Более 8000 предприятий в нашей стране пользовались алмазным инструментом, причем производилось более 2500 видов таких инструментов - от крошечных волочильных устройств до громадных режущих дисков для разрезания крупных каменных блоков.

Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления при наличии различных катализаторов: металлического никеля, сложной смеси железа, никеля и хрома, и др. Кристаллизация алмазов происходит при давлении 50000 - 60000 атм. и температуре 1400- 1600 °С.

Обычно в реакторах высокого давления образуются алмазные кристаллы размером не более 1 мм. Такие мелкие камни вполне пригодны для промышленных целей, но из них трудно изготовить украшения. Сравнительно недавно разработана новая технология, позволяющая выращивать кристаллы алмаза размером до 6 мм. Однако синтез алмазов, которые можно было бы превратить в крупные бриллианты, так сложен и дорог, что синтезированные бриллианты не могут конкурировать с природными: кристалл искусственного алмаза массой 50 - 60 г (250 - 300 карат) стоит столько же, сколько 1 т золота.

Искусственные алмазы используются преимущественно для промышленных целей. Структура молекулы и буровое оборудование с алмазными кристаллами оказались незаменимыми во многих отраслях промышленности. Алмазная технология позволяет повысить производительность труда на 30 - 50, а в некоторых случаях и на 100%. Искусственные алмазы находят применение при изготовлении часов, прецизионных приборов. Ими режут и обрабатывают твердые металлы, керамику, стекло и т.д. С их помощью изготовляют тончайшую проволоку.

Синтезирована особая разновидность черных алмазов, называемая карбонадо, которая тверже алмазов, встречающихся в природе. Синтез карбонадо основан на методе порошковой металлургии (прессование алмазного порошка производится при давлении 30 - 80 тыс. атм., а его спекание - при 1000 °С). Карбонадо позволяет обрабатывать сами алмазы, из него изготавливают сверхтвердые буровые коронки.

По своей структуре алмаз отличается от графита более плотной упаковкой атомов углерода в кристалле. В 1985 г. были синтезированы фуллерены - новая разновидность многоатомных молекул углерода, состоящая из большого числа (от 32 до 90) атомов углерода и имеющая сферическую форму. Дальнейшие работы привели к созданию не только сферических молекул, но и эллипсоидальных (барелленов), трубчатых (тубеленов) и других конфигураций. Из таких молекул можно создавать материалы невиданной прочности, элементы компьютеров XXI в., молекулярные сита и т.п.

Несмотря на рост производства искусственных алмазов и их широкое применение, обычные твердые материалы в виде различных карбидов металлов не утратили своей практической значимости. Хотя карбиды металлов менее тверды, чем алмазы, зато они более термостойки. Сравнительно недавно из нитрида бора синтезирован материал, который тверже алмаза. При давлении 100 000 атм. и температуре 2000 °С нитрид бора превращается в боразон - материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.

К настоящему времени налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней: корунда (красного рубина и синего сапфира), изумруда и др.

5. СОВРЕМЕННЫЕ синтетические МАТЕРИАЛЫ

Из материалов изготавливаются различные изделия: устройства, машины и самолеты, мосты и здания, космические аппараты и микроэлектронные схемы, ускорители заряженных частиц и атомные реакторы, одежда, обувь и др. Для каждого изделия нужны свои материалы с вполне определенными свойствами, к которым предъявляются высокие требования.

Пластмассы - это материалы на основе природных или синтетических полимеров, способные принимать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Помимо полимера пластмассы содержат наполнители, стабилизаторы, пигменты и другие компоненты. Пластмассы различаются по эксплуатационным свойствам (например, антифрикционные, атмосфере-, термо- или огнестойкие), виду наполнителя (стеклопластики, графитопласты и др.), а также по типу полимера (аминопласты, белковые пластики и т.п.). В зависимости от характера превращений, происходящих в полимере при формовании изделий, пластмассы подразделяются на термопласты (важнейшие из них создаются на основе полиэтилена, поливинилхлорида, полистирола) и реактопласты (наиболее крупнотоннажный вид из них - фенопласты). Основные методы переработки термопластов - литье под давлением, вакуумформование, пневмоформование и др. Реактопласты формуются прессованием и литьем под давлением.

В 1980 г. американские ученые впервые обнаружили природную полиэфирную пластмассу в гнездах пчел, живущих в земле.

Массовое производство пластмасс началось во второй половине XX в. В 1900 г. мировое производство пластмасс составило около 20 тыс. т, а в 1970 г. - уже 38 млн. т. В настоящее время объем производства пластмасс сравним с объемом выпуска стали - сотни миллионов тонн в год.

Наиболее перспективны материалы с высокой термостойкостью: полифениленсульфид, ароматические полиамиды, фторполимеры и др. Они выдерживают относительно высокую температуру - 200-450 °С и используются в авиационной и ракетной технике.

Полимерные материалы широко применяются в строительной индустрии для изготовления рам, облицовочных плит, кровли и т.д. За более чем столетнюю историю развития автомобилестроения пластмассы постепенно вытесняют металл. Предполагается, что в ближайшем десятилетии на изготовление одного легкового автомобиля потребуется сотни килограммов пластмасс: полиэтилена, поливинилхлорида, полипропилена и др., тогда как в 1965 г. на один легковой автомобиль приходилось лишь 15 кг полимерных материалов. Уже производят легковые автомобили с полностью пластмассовым кузовом и со многими другими деталями, даже с теми, которые несут высокую механическую нагрузку.

Эластомеры - еще одна разновидность полимерных материалов. К ним относится прежде всего каучук, из которого производится широко распространенная резина, обладающая отличительным свойством - эластичностью. Такое свойство объединяет многие эластичные материалы в одну группу эластомеров. Долгое время был известен только один вид эластичного материала - природный каучук. Он до сих пор добывается из каучукового дерева - бразильской гевеи - таким же способом, как и смола в хвойных лесах, - путем подсечки.

Химия завладела каучуком еще в первой половине XIX в. - в 1841 г. американский изобретатель Гудьир предложил способ вулканизации. Хрупкий при низкой температуре и липкий при нагревании сырой каучук при вулканизации переходит в эластичное состояние. При этом его макромолекулярные цепи образуют сетчатую структуру, соединяясь мостиками из атомов серы. В 1932 г. под руководством нашего соотечестве?

К-во Просмотров: 146
Бесплатно скачать Контрольная работа: Исследования химии в 20-21 веках