Контрольная работа: Изменение структуры жидкости около твердой поверхности
Из четвертого уравнения системы (18) (19)
Третье уравнение системы (18):
????????? , (20)
Тогда все неизвестные константы находим из системы:
(21)
Теперь, если будем считать, что нет градиента давления или он равен нулю, то есть нет причины, которая вызывает движение жидкости, то все константы равны нулю и соответственно uz ( x )=0 и δIab ( x )=0 . Этого и требовалось ожидать.
Рассчитаем расход вещества, то есть количество вещества, проходящее через поперечное сечение в форме квадрата со стороной 2а за единицу времени:
Расход жидкости в классическом случае через тоже поперечное сечение, то есть если не учитывать влияние тензора момента инерции, равен:
(22)
То, что Q ( δI =0) отрицательно, объясняется тем, что выбирая за положительное направление скорости направление оси z, мы тем самым задаем отрицательный градиент давления.
Найдем отношение Q кQ ( δI =0) .
Видно, что расход жидкости уменьшается, при наличии тензора момента инерции, что видимо связано с торможением жидкости из-за вращения молекул.
Стационарное движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.
Пусть пластины расположены на расстоянии а друг от друга. Выберем одну из пластин неподвижной, а вторую двигающейся относительно первой со скоростью V ( a )=аГ.
Начало координат расположим на нижней неподвижной плоскости.
Общее решение будет идентично с решение первой задачи. Здесь мы будем иметь другие граничные условия. Поэтому система уравнений, описывающая стационарное течение в нашем случае имеет вид:
(23)
Используем краевые условия, в результате чего получим новую систему:
(24)
Будем решать систему относительно констант К1 и К2 из-за того, что некоторые слагаемые в этих константах известны заранее в стацинарной задаче без тензора момента инерции. Например, константа К1 предположительно имеет слагаемое равное Г. Поэтому система (24) принимает вид:
(25) Умножим третье уравнение на βА2 и сделаем следующие замены:
, (26)
где К3 – дополнительная константа.
Константа Р0 в основном и есть результат, который был известен ранее, тоесть в случае без учета тензора момента инерции.
В результате таких замен получим систему для К3 и К2 .
(27)