Контрольная работа: Химия и физика пленкообразующих веществ
Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.
Приведем уравнение гидродинамики для стационарного течения жидкости, с вязкостью через капилляр вискозиметра:
Q – количество жидкости, протекающей через капилляр капиллярного вискозиметра в единицу времени, м3 /с,
R – радиус капилляра вискозиметра, м
L – длина капилляра капиллярного вискозиметра, м
– вязкость жидкости, Па·с,
p – разность давлений на концах капилляра вискозиметра, Па.
Отметим, что формула Пуазейля справедлива только для ламинарного потока жидкости, то есть при отсутствии скольжения на границе «жидкость – стенка капилляра вискозиметра».
Приведенное уравнение используют для определения динамической вязкости. Ниже [рис.5] размещено схематическое изображение капиллярного вискозиметра.
В капиллярном вискозиметре жидкость из одного сосуда под влиянием разности давлений р истекает через капилляр сечения 2R и длины L в другой сосуд. Из рисунка видно, что сосуды имеют во много раз большее поперечное сечение, чем капилляр вискозиметра, и соответственно этому скорость движения жидкости в обоих сосудах в N раз меньше, чем в капилляре вискозиметра. Таким образом не все давление пойдет на преодоление вязкого сопротивления жидкости, очевидно, что часть его будет расходоваться на сообщение жидкости неопределённой кинетической энергии. Следовательно, в уравнение Пуазейля необходимо ввести некоторую поправку на кинетическую энергию, называемую поправкой Хагенбаха:
Рис. 5. Схематическое изображение капиллярного вискозиметра |
где h – коэффициент, стремящийся к единице, d – плотность исследуемой жидкости. |
Вторую поправку условно назовём поправкой влияния начального участка капилляра вискозиметра на характер движения исследуемой жидкости. Она будет характеризовать возможное возникновение винтового движения и завихрения в месте сопряжения капилляра с резервуаром капиллярного вискозиметра (откуда вытекает жидкость). Суть поправки состоит в том, что вместо истинной длины капилляра вискозиметра L мы вводим кажущуюся длину L':
n – определяется экспериментально на основе изменений при разных значениях L и примерно равен единице
Следует учитывать, что при измерении вязкости органических жидкостей с большой кинематической вязкостью поправка Хагенбаха незначительна и составляет доли процента. Если же говорить о высокотемпературных вискозиметрах, то вследствие малой кинематической вязкости жидких металлов поправка может достигать 15%.
Метод капиллярной вискозиметрии вполне можно отнести к высокоточному методу вискозиметрии в силу того, что относительная погрешность измерений составляет доли процента, в зависимости от подбора материалов вискозиметра и точности отсчёта времени, а также иных параметров, участвующих в методе капиллярного истечения.
Ротационный метод.
Ротационный метод вискозиметрии заключается в том, что исследуемая жидкость помещается в малый зазор между двумя телами, необходимый для сдвига исследуемой среды. Одно из тел на протяжении всего опыта остаётся неподвижным, другое, называемое ротором ротационного вискозиметра, совершает вращение с постоянной скоростью. Очевидно, что вращательное движение ротора визкозиметра передается к другой поверхности (посредством движения вязкой среды; отсутствие проскальзывания среды у поверхностей тела предполагается, таким образом рассматриваются). Отсюда следует тезис: момент вращения ротора ротационного вискозиметра является мерой вязкости.
Для простоты мы рассмотрим инверсную модель ротационного вискозиметра [рис. 6]: вращаться будет внешнее тело, внутреннее тело останется неподвижным, ему и будет сообщаться момент вращения. Однако для краткости изложения будем называть внутреннее тело ротором ротационного вискозиметра.
Рис. 6. Схематическое изображение
ротационного вискозиметра.
Введём необходимые обозначения:
R1 ,L |
|
радиус и длина ротора ротационного вискозиметра |
ω |
|
К-во Просмотров: 361
Бесплатно скачать Контрольная работа: Химия и физика пленкообразующих веществ
|