Контрольная работа: Химия и физика пленкообразующих веществ
Химия и физика пленкообразующих веществ.
Контрольная работа №1
Билет №13 | ||
1 | — | Персистентная длина цепи. |
2 | — | Влияние концентрации полимера и термодинамического качества растворителя на вязкость концентрированных растворов. |
3 | — | Методы определения оптических свойств покрытий. |
Билет №7 | ||
1 | — | Ультрацентрифугирование. |
2 | — | Методы измерения вязкости жидкостей: капиллярная и ротационная вискозиметрия. |
Билет №13.
1. Персистентная длина цепи.
Персистентная длина цепи. Эта характеристика гибкости макромолекул основана на графическом анализе проекции полимерной цепи, образующей на плоскости линию с непрерывно изменяющейся кривизной («червеобразную» цепь) [рис.1].
Эта характеристика гибкости макромолекул была предложена Породом и Доти.
Проекция вектора расстояния между концами бесконечно длинной цепи на направление касательной первому звену такой молекулы, равная , и соответствует персистентной длине.
Персистентная длина в 2 раза меньше статистического сегмента Кулона, т.е.
.
Оценить значения целесообразно для полужестких цепей, когда
В этом случае:
|
|
Рис.1. Проекции цепи на плоскость для расчета:
а) размеров сегмента Куна; б) персистентной длины.
Билет №13.
2. Влияние концентрации полимера и термодинамического качества растворителя на вязкость концентрированных растворов.
Смешение линейного или разветвленного полимера с низкомолекулярной жидкостью может привести либо к растворению, либо к образованию коллоидной системы – в зависимости от достигаемой степени дисперсности. При достижении молекулярной степени дисперсности образуются истинные растворы, для которых характерны самопроизвольность образования, равновестность, гомогенность, стабильность.
Системы полимер – растворитель , концентрация полимера в которых такова, что взаимодействием между растворенными макромолекулами можно пренебречь, называются разбавленными растворами. Концентрационной границей является величина . Макромолекулы в разбавленном растворе представляют собой более или менее анизотропные по форме статистические клубки, способные удерживать в результате сольватации или иммобилизации некоторое количество молекул растворителя. Свободное движение таких молекулярных клубков может быть уподоблено движению сферической частицы, радиус которой соответствует большой полуоси гипотетического эллипсоида вращения, а объем ее равен объему статистического клубка. Вязкость таких растворов описывается уравнением Энштейна:
здесь - коэффициент формы; для сферической частицы , для клубков анизотропной формы:
где a и b – большая и малая полуоси гипотетического эллипсоида вращения молекулярного клубка, - объемная доля полимера.
Закон Эйнштейна выполняется достаточно строго лишь до концентрации .
Однако асимметрия молекулярных клубков является причиной проявления аномалии вязкостных свойств даже в разбавленных растворах синтетических и природных полимеров вследствие ориентации таких частиц в потоке при достаточно больших τ, а также из-за гидродинамического взаимодействия. При небольших и средних τ разбавленные растворы полимеров являются ньютоновскими жидкостями.
Растворы полимеров, в которых отсутствует линейность концентрационной зависимости вязкости, называются концентрированными.
Резкое увеличение вязкости концентрированных растворов с повышением концентрации полимера объясняется следующими структурными и термодинамическими факторами:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--