Контрольная работа: Колеблющиеся системы
Дать определение колебательному процессу. Дать определение основным характеристикам колебательного процесса: амплитуде, частоте, периоду, фазе, начальной фазе. Какие колебания называются гармоническими?
Колебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени.
Примеры колебаний: колебание величины заряда на обкладках конденсатора в колебательном контуре; колебание грузика, закрепленного на пружине; колебание маятника.
Гармонические колебания - это такие колебания, при которых колеблющаяся величина x изменяется со временем по закону синуса, либо косинуса:
,
или
гдеA - амплитуда;
ω - круговая частота;
α - начальная фаза;
( ωt + α ) - фаза.
Фаза колебания - это аргумент гармонической функции:
( ωt + α )
Начальная фаза α - это значение фазы в начальный момент времени, т.е. при t = 0.
Амплитуда колебания A - это наибольшее значение колеблющейся величины.
При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π .
ω(t + T) +α = ωt + α + 2π,
или
ωT = 2π.
Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду
Единица измерения частоты - герц (Гц), 1 Гц = 1 с-1.
Так как
,
то
Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно: