Контрольная работа: Колеблющиеся системы

Это сильное неравенство определяет границу применимости геометрической оптики. Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики.

Выше был рассмотрен случай дифракции света от удаленного источника на препятствиях круглой формы. Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как зоны Френеля теперь нужно строить не на плоской, а на сферической поверхности .

Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны:

Все выводы изложенной выше теории Френеля остаются справедливыми и в этом случае.

Следует отметить, что теория дифракции (и интерференции) световых волн применима к волнам любой физической природы. В этом проявляется общность волновых закономерностей. Физическая природа света в начале XIX века, когда Т. Юнг, О. Френель и другие ученые развивали волновые представления, еще не была известна.

Вопрос 6

Что такое лазер? Каков принцип действия лазера?

Слово лазер образовано как сочетание первых букв слов английского выражения «Light Amplification by Stimulated Emission of Radiation» («усиление света при помощи индуцированного излучения»).

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10-5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.

2. Свет лазера обладает исключительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В узком интервале спектра кратковременно (в течение промежутка времени продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7(103 Вт/см2, причем суммарно по всему спектру. На узкий же интервал ((=10-6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощённой энергии волны часть атомов возбуждается, т. е. Переходит в высшее энергетическое состояние. При этом от светового пучка отнимается энергия h =E2-E1 равная разности энергий между уровнями 2 и 1.

Вопрос 7

Через блок, имеющий форму диска перекинут шнур. Концам шнура привязали грузики массой 100 и 110 г. С каким угловым ускорением будут двигаться грузики, если масса блока равна 400 г?

a = m2 g / (2m1 – m2 ) = 110*9.8/ (2*100-110) = 11.98 м/с2


Вопрос 8

Человеческое ухо может воспринимать звуки частотой приблизительно от 20 до 20000 Гц. Между какими длинами волн лежит интервал слышимости звуковых колебаний? Скорость звука в воздухе считать равной 330 м/с.

Длина волны равна:

λ = υ/ν

Принимая скорость звука 330 м/с, получаем

λ1 = υ/ν1 = 330/20 = 16,5

λ2 = υ/ν2 = 330/20 000= 0,0165

Ответ: интервал слышимости звуковых колебаний лежит между длиной волны равной 0,0165 и длиной волны равной 16,5 мкм.

Вопрос 9

Разность потенциалов между катодом и анодом электронного устройства 90 В, расстояние 1 мм. С каким ускорением движется электрон от катода к аноду? Какую скорость приобретет электрон, подлетая к аноду? За какое время электрон пролетит расстояние от катода до анода? Поле считать однородным.

Δφ= 90 B

В качестве пpимеpа pассмотpим движение заpяженной частицы в одноpодном магнитном поле. Сначала pассмотpим случай, когда частица влетает в магнитное поле пеpпендикуляpно к его силовым линиям. В этом случае магнитная сила не в состоянии вывести частицу из плоскости, пеpпендикуляpной к полю, т.к. сама пеpпендикуляpна к линиям поля. Учитывая, что магнитное поле не совеpшает pаботы над заpяженной частицей, ее кинетическая энеpгия остается постоянной (остается постоянным модуль скоpости частицы). Магнитное поле способно изменять только напpавление движения частицы. Поэтому ноpмальное ускоpение отлично от нуля.

Запишем уpавнение движения частицы. Согласно втоpому закону Ньютона

К-во Просмотров: 394
Бесплатно скачать Контрольная работа: Колеблющиеся системы