Контрольная работа: Математическая основа учёта объёма древесины

У отдельных древесных пород в разных частях ствола показатель степени m изменяется от 0 до 3. В зависимости от значения m уравнения принимают следующий вид:

при m = 0 y2 = A(2)

при m = 1 y2 = Ax(3)

при m = 2 y2 = Ax2 (4)

при m = 3 y2 = Ax3 (5)

В первом случае формула (2) – это уравнение прямой, параллельной оси абсцисс. При вращении её вокруг оси абсцисс образуется цилиндр. Во втором случае (3) – это уравнение параболы второго порядка. Получаемое при этом тело вращения называется параболоидом второго порядка. В третьем случае (4) – две пересекающихся прямые при вращении образуют обыкновенный конус. И, наконец, в последнем случае (5) – это уравнение носит название уравнения параболы Нейля, а при вращении кривой такого рода получается нейлоид.

Отдельные части ствола приближаются к этим четырём геометрическим формам: нижняя – к нейлоиду, средняя (отдельные короткие отрезки) – к цилиндру, вершинная – к конусу, а большая часть – к параболоиду второго порядка.

Вычисление объёмов этих тел известны из курса стереометрии.

Vцил = Sосн * h

Vкон = 1/3 Sосн * h

Объём параболоида равен объёму цилиндра, имеющего с параболоидом одинаковые основания и высоту, умноженному на коэффициент f0 =1/(2r+1). Этот множитель может быть близким к единице или меньше единицы, в зависимости от r. Множитель f0 называют коэффициентом абсолютной формы.

Тела вращения имеют следующие показатели:

Показатель Коэффициент

степени абсолютной

формы

Цилиндр………………………………………………0 1

Полукубический параболоид……………………….1/3 3/5

Параболоид Апполона……………………………….1/2 1/2

Кубический параболоид……………………………..2/3 3/7

Конус…………………………………………………..1 1/3

Нейлоид……………………………………………….3/2 1/4

Значения r вычисляются по формуле

,

где y2 и y1 – ординаты точек кривой; x2 и x1 – соответствующие абсциссы.


У древесных стволов чаще всего r варьирует от 8,51 до 0,55, что соответствует значению f0 от 0,49 до 0,45.

Великий русский учёный Д.И. Менделеев для определения объёмов стволов применил уравнение кубической параболы, характеризующее образующую древесного ствола:

g = A+Bx+Cx2 +Dx3 , (6)

где g – площадь сечения; x – расстояние от шейки корня до места измерения диаметров; A, B, C, D – некоторые постоянные коэффициенты.

По диаметрам в разных сечениях, определяемых по приведённым выше уравнениям, могут быть найдены площади поперечных сечений древесных стволов по следующей формуле (6). Определив площади поперечных сечений стволов, легко найти объём ствола или его части. Этот объём можно рассматривать как сумму бесконечно тонких поперечных отрезков, имеющих высоту dx и площадь основания g.

К-во Просмотров: 203
Бесплатно скачать Контрольная работа: Математическая основа учёта объёма древесины