Контрольная работа: Математическая основа учёта объёма древесины

Содержание

Введение

Приближённые формулы для определения объёмов древесины стволов и их частей

Погрешность измерений

Таблицы объёмов древесных стволов

Определение запаса насаждений. Учёт запаса насаждений

Техника перечёта

Заключение

Список литературы

Приложение


Введение

Прибайкальский район, на территории которого расположены земли Прибайкальского сельского лесхоза, богат лесными ресурсами. Общая площадь земель в Прибайкальском лесхозе составляет 55591 га, из них 54082 га покрыты растительностью.

Ежегодно возникает необходимость производить всесторонний учёт запасов древесины.

Действия, направленные на учёт леса, определение объёмов древесины, называют лесной таксацией .

Лесная таксация имеет дело с измерениями, дающими объективную оценку леса, и при решении своих задач широко применяет способы математики. Различные математические расчёты и математический анализ, при многих графических построениях и изучении полученных кривых, используются методы аналитической геометрии. В своей работе я рассмотрела вопросы, связанные с вычислением объёмов деревьев.

При этом могут быть два случая: первый, когда требуется найти объёмов срубленного дерева, и второй, когда нужно найти объём растущего дерева.

Определить объём срубленного дерева проще, т.к. его можно непосредственно измерить на всём его протяжении. При нахождении объёма растущего дерева для установления его диаметров на различной высоте приходится применять иные приёмы, т.к. произвести замеры непосредственно на всём протяжении растущего дерева невозможно. В своей работе я провела математическое обоснование практических приёмов, применяемых при определении объёмов древесины на примере Прибайкальского сельского лесхоза.

Также я рассмотрела вопрос о погрешности измерений, возникающей при вычислении объёмов деревьев как срубленных, так и растущих.


Приближённые формулы для определения объёмов древесины стволов и их частей

Дерево состоит из корней, ствола и сучьев, образующие крону. Наиболее ценной частью дерева, на долю которой приходится в среднем 60–85% его объёма, является древесный ствол. Форма древесных стволов весьма разнообразна. У деревьев, выросших в густом лесу, ствол более правильной формы, у одиночно растущих деревьев – обычно неправильной, при этом у них сильно развита крона.

Если древесный ствол разрезать горизонтальной плоскостью, то в сечении будет круг или эллипс.Так, поперечные сечения ствола у сосны без коры во всех частях близки к эллипсам.

Площади кругов, по сравнению с эллипсами, дают незначительное превышение, вытекающее из следующего.

При равенстве a и b площади эллипса и круга равны. По мере увеличения разницымежду величинамиa и b увеличиваются также различия в площадях.

Если древесный ствол разрезать по сердцевине вертикальной плоскостью, то в сечении получится фигура, ограниченная кривой, которая расположена симметрично по отношению к вертикальной оси (Рис. 1).

При таком положении ствол можно рассматривать как тело вращения, ограниченное некоторой кривой. Зная уравнение этой кривой, можно было бы определить объём ствола. Многочисленные исследования кривых ствола показали, что они неправильны и непостоянны. Уравнения, точно определяющего характер этой кривой, до сих пор не найдено.

Образующая древесного ствола – слишком сложная кривая, и рассматривать мы её будем как сочетание разных кривых (рис. 3).

При обследовании большого количества стволов выясняется, что в нижней части ствола образующая имеет обычно вогнутую форму, на большей части ствола она выпуклая и лишь на коротких участках приближается к прямой.

Способы определения объёма ствола основываются на применении образующей ствола, характеризующейся уравнением

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 197
Бесплатно скачать Контрольная работа: Математическая основа учёта объёма древесины