Контрольная работа: Математическая основа учёта объёма древесины
(7)
(8)
Первообразной для xn , будет функция , отсюда
(9)
Для определения объёма ствола или его части сначала можно ограничиться двумя членами подынтегрального выражения. В этом случае
g = A + Bx (10)
(11)
Для нахождения коэффициентов А и В берут два конкретных сечения:g 0 – у основания ствола и g L – на расстоянии L от шейки корня и составляют два уравнения, определяющих площади этих сечений:
g0 = A + Bx0 иgL = A + BxL .
В этих уравнениях x 0 = 0, x L = L . Поэтому можем написать
g 0 = A ; gL = A + BL .
Решая последнее уравнение относительно В, получим
Подставив в формулу (11) вместо A и B вычисленные значения этих коэффициентов и вместо x равную ему величину L, получим
Эта формула называется простой формулой Смалиана.
Возьмём одно поперечное сечение на половине целого ствола или его части, а второе – в тонком конце. Местоположение первого сечения определяется величиной L /2 , а второго – на расстоянии L от основания ствола. Обозначив первое сечение через g L /2, а второе gL , можно написать
Из первого уравнения вычтем второе
Заменив во втором уравнении величину A выражением , получим
Подставим найденные значения A и B в основную формулу (11)
Заменив x через L, получим
Обозначим поперечное сечение на половине ствола или его части gL /2 греческой буквой γ (гамма), тогда формула примет следующий вид:
V = γL.