Контрольная работа: Математические методы в экономике

Задание 1. Графоаналитический метод решения задач линейного программирования

Постановка задачи: Необходимо найти решение задачи, состоящей в определении максимального значения функции F=c1 x1 +c2 x2 , где переменные xj ≥0 (j=1;2) – планируемое количество единиц j-й продукции, а сj – прибыль на единицу j-й продукции при условиях ai 1 x1 +ai 2 x2 ≤bi (i=1,…,k), xj ≥0 (j=1,2).

Решение

1. Заменяем ограничения-неравенства на ограничения-равенства (привести задачу к каноническому виду).

2. Построим прямые, соответствующие полученным уравнениям.

3. Определить полуплоскости, соответствующие заданным неравенствам в системе ограничений.

4. Поиск области допустимых решений задачи.

5. Построить градиент функции цели: grad F=(F’x 1 ; F’x 2 ).

6. Построить прямую нулевого уровня c1 x1 +c2 x2 =0, (эта прямая перпендикулярна градиенту).

7. Переместить эту прямую в направлении градиента, в результате чего будет найдена точка (точки), в которой целевая функция принимает максимальное значение, или же установлена неограниченность функции на множестве планов.

8. Определить координаты точки максимума функции и вычислить значение целевой функции в этой точке.

Система ограничений:

Целевая функция .

(1)

Построим прямые, ограничивающие многоугольник допустимых решений:

6

15

2

1

7

8

3

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 477
Бесплатно скачать Контрольная работа: Математические методы в экономике