Контрольная работа: Математичне програмування
Розв’язок
Розв’яжемо задачу лінійного програмування симплексним методом.
Визначимо максимальне значення цільової функції F(X) = x1+2x2 за таких умов-обмежень.
2x1+3x2≤6
2x1+4x2≤4
2x1+x2≥4
Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних (перехід до канонічної форми).
2x1 + 3x2 + 1x3 + 0x4 + 0x5 = 6
2x1 + 4x2 + 0x3 + 1x4 + 0x5 = 4
2x1 + 1x2 + 0x3 + 0x4-1x5 = 4
Введемо штучні змінні x.
2x1 + 3x2 + 1x3 + 0x4 + 0x5 + 0x6 = 6
2x1 + 4x2 + 0x3 + 1x4 + 0x5 + 0x6 = 4
2x1 + 1x2 + 0x3 + 0x4-1x5 + 1x6 = 4
Для постановки завдання на максимум цільову функцію запишемо так:
F(X) = x1+2x2 - Mx6 => max
Отриманий базис називається штучним, а метод рішення називається методом штучного базису.
З рівнянь висловлюємо штучні змінні:
x6 = 4-2x1-x2+x5
які підставимо в цільову функцію:
F(X) = x1 + 2x2 - M(4-2x1-x2+x5) => max
або
F(X) = (1+2M)x1+(2+1M)x2+(-1M)x5+(-4M) => max
Матриця коефіцієнтів A = a(ij) цієї системи рівнянь має вигляд:
Вирішимо систему рівнянь відносно базисних змінних:
x3, x4, x6,
Вважаючи, що вільні змінні рівні 0, отримаємо перші опорний план:
X1 = (0,0,6,4,0,4)
План | Базис | В | x1 | x2 | x3 | x4 | x5 | x6 |
0 | x3 | 6 | 2 | 3 | 1 | 0 | 0 | 0 |
x4 | 4 | 2 | 4 | 0 | 1 | 0 | 0 | |
x6 | 4 | 2 | 1 | 0 | 0 | -1 | 1 | |
Індексний рядок | F(X0) | -4M | -1-2M | -2-1M | 0 | 0 | 1M | 0 |