Контрольная работа: Метод скінчених різниць в обчислювальній математиці
Одним з найбільш простих і досить ефективних методів
оцінки похибки й уточнення отриманих результатів є правило Рунге. Для оцінки похибки за правилом Рунге порівнюють наближені розв’язки, отримані при різних кроках сітки. При цьому використовується наступне припущення: глобальна похибка методу порядку p у точці хi подається у вигляді
.
За формулою Рунге
Таким чином, із точністю до (величина більш високого порядку малості) при h→0 похибка методу має вигляд:
де yi – наближене значення, отримане в точці з кроком h; y2i – із кроком h/2; p - порядок методу; y(x2i ) - точний розв’язок задачі.
Метод прогнозу і корекц ії
Підправивши схему Эйлера , одержимо схему прогнозу
,
де наближене значення . Цю формулу використовувати не можна ,оскільки схема прогнозу нестійка . Тому використовує-мо схему корекції
Оцінюючи похибки прогнозу і корекції, одержимо
- похибка корекції,
- похибка прогнозу .
Істинне значення лежить між прогнозом і корекцією .На будь-якому кроці можна оцінити точність рішення . При заданому =0,0000001, наприклад, .
Віднімаючи з співвідношення , маємо
.
Уточнюємо розв’язання, виходячи з формули :
Ця формула завершає схеми прогнозу і корекції .
Метод кінцевих різниць для розв ’ яза ння лінійних крайових задач
Маємо відрізок [a,b]. Потрібно знайти розв’язок лінійного диференціального рівняння другого порядку
,
що задовольняє такі крайові умови:
Виберемо рівномірну сітку: x = a + ih, i = 0,1,2,…,n... Нехай Апроксимуємо і у кожному внутрішньому вузлі (i = 1, 2, …, n-1) центральними різницями , і на кінцях відрізка – односторонніми скінченнорізницевими апроксимаціями , .
Використовуючи ці формули, одержуємо різницеву апроксимацію вихідного крайового завдання: