Контрольная работа: Метод скінчених різниць в обчислювальній математиці
Зміст
Постановка задачі
Вступ
1 Теоретична частина
2 Програмна реалізація
Список використаної літератури
Постановка задачі
Використовуючи метод кінцевих різниць , розв’язати крайову задачу для звичайного диференціального рівняння
Вступ
Нехай потрібно чисельно розв’язати задачу Коші для звича-йного диференціального рівняння першого порядку, тобто знайти наближений розв’язок диференціального рівняння y=F(x,y), що задовольняє початковій умові y(x
)=y
.Чисельне розв’язання задачі полягає в побудові таблиці наближених значень y
,y
,y
,...,y
-розв’язку рівняння y=
(x ) у точках x
,x
,x
,...,x
- вузлах сітки .
![]() |
y
yn *
y3 *
y2 *
y1 *
y0 *
O x0 x1 x2 x3 xn x
На рисунку * позначені точки, що відповідають наближено-му розв’язку задачі Коші. Треба зазначити, що частіше використо-вують систему рівновіддалених вузлів x =x
+ ih (i=1,2,..,n) , де h - крок сітки
( h > 0 ) .
1 Теоретич н а част ина
Методи Рунге-Кутта
Різні представники цієї категорії методів потребують більшого чи меншого об’єму обчислень і відповідно забезпечують більшу чи меншу точність. При розв’язанні конкретної задачі виникають питання, якою із формул Рунге-Кутта доцільно скористатися і як вибрати крок сітки.
Якщо неперервна й обмежена разом із своїми четвертими похідними, то гарні результати дає метод четвертого порядку. Він описується системою наступних п'яти співвідношень:
1
2
3 (
);
4
5
--> ЧИТАТЬ ПОЛНОСТЬЮ <--